Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1006–1012 | Cite as

Effect of Vector Correlations in Rotational-Translational Exchange on the Optical Anisotropy of Gaseous Molecular Complexes

  • A. P. BlokhinEmail author
  • V. A. Tolkachev
Article
  • 1 Downloads

A model for the formation of rotationally nonequilibrated ensembles of gaseous molecular complexes is developed taking into account the vector dynamics of translational-rotational exchange and its manifestation as anisotropic light absorption and emission. The proposed model is used to calculate the optical anisotropy of an ensemble of molecular complexes as a function of the change of partial angular momenta and the ratio of moments of inertia of the starting fragments and the resulting complexes. The increase of additional angular momentum due to moments induced during rotational-translational exchange is shown to be capable of causing both a decrease and increase of anisotropy depending on the shape of the complex inertia ellipsoids.

Keywords

molecular complexes rotational-translational exchange anisotropic light absorption and emission dynamics of molecular rotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Nagata, T. Kondow, and R. N. Zare, Mol. Phys., 70, 1159–1162 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Povedailo, A. P. Blokhin, M. F. Gelin, and V. A. Tolkachev, Opt. Spektrosk., 73, No. 3, 457–552 (1992) [V. A. Povedailo, A. P. Blokhin, M. F. Gelin, and V. A. Tolkachev, Opt. Spectrosc., 73, No. 3, 320–323 (1992)].Google Scholar
  3. 3.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem., 98, 3337–3351 (1994).Google Scholar
  4. 4.
    A. P. Blokhin and M. F. Gelin, J. Lumin., 72–74, 840–841 (1997).CrossRefGoogle Scholar
  5. 5.
    U. Marvet, Q. Zhang, E. J. Brown, and M. Dantus, J. Chem. Phys., 109, 4415–4442 (1998).Google Scholar
  6. 6.
    A. P. Blokhin, M. F. Gelin, I. I. Kalosha, S. A. Polubisok, and V. A. Tolkachev, J. Chem. Phys., 110, 978–993 (1999).Google Scholar
  7. 7.
    J. S. Baskin and A. H. Zewail, J. Phys. Chem. A, 105, 3680–3692 (2001).Google Scholar
  8. 8.
    U. Marvet and M. Dantus, Chem. Phys. Lett., 245, 393–399 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Blokhin, Zh. Prikl. Spektrosk., 80, No. 3, 58–64 (2013) [A. P. Blokhin, J. Appl. Spectrosc., 80, No. 1, 54–60 (2013)].Google Scholar
  10. 10.
    A. P. Blokhin and M. F. Gelin, Opt. Spektrosk., 88, No. 5, 806–813 (2000) [A. P. Blokhin and M. F. Gelin, Opt. Spectrosc., 88, No. 5, 806–813 (2000)].Google Scholar
  11. 11.
    A. P. Blokhin and M. F. Gelin, Phys. Chem. Chem. Phys., 4, 3356–3364 (2002).CrossRefGoogle Scholar
  12. 12.
    A. G. Pierre and W. A. Steele, Phys. Rev., 184, 172–186 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    A. B. Myers, P. L. Holt, M. A. Pereira, and R. M. Hochstrasser, Chem. Phys. Lett., 130, 265–270 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    N. S. Scherer, L. R. Khundkar, T. S. Rose, and A. H. Zewail, J. Chem. Phys., 91, 6478–6483 (1987).Google Scholar
  15. 15.
    N. A. Borisevich, E. V. Khoroshilov, I. V. Kryukov, P. G. Kryukov, A. V. Sharkov, A. P. Blokhin, and G. B. Tolstorogev, Chem. Phys. Lett., 191, 225–237 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    A. P. Blokhin, M. F. Gelin, E. V. Khoroshilov, I. V. Kryukov, and A. V. Sharkov, Opt. Spektrosk., 95, No. 3, 371–378 (2003) [A. P. Blokhin, M. F. Gelin, E. V. Khoroshilov, I. V. Kryukov, and A. V. Sharkov, Opt. Spectrosc., 95, No. 3, 560–572 (2003)].Google Scholar
  17. 17.
    J. S. Baskin, M. Chachisvilis, M. Gupta, and A. H. Zewail, J. Phys. Chem. A, 102, 4158–4171 (1998).Google Scholar
  18. 18.
    A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovski, S. A. Tihomirov, and G. B. Tolstorogev, Zh. Prikl. Spektrosk., 70, No. 1, 66–72 (2003) [A. P. Blokhin, M. F. Gelin, O. V. Buganov, V. A. Dubovski, S. A. Tihomirov, and G. B. Tolstorogev, J. Appl. Spectrosc., 70, No. 3, 378–384 (2003)].Google Scholar
  19. 19.
    F. Qing, Q. Guao, L. Chen, H. Quan, and J. Mizukado, Chem. Phys. Lett., 706, 93–98 (2018).Google Scholar
  20. 20.
    R. G. Gibilisco, I. Barnes, and P. Wiesen, Chem. Phys. Lett., 705, 38–43 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.B. I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations