Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 991–996 | Cite as

Photochemical Processes in Molecular Polymethine Dye Probes in the Presence of Bile Salts

  • A. S. TatikolovEmail author
  • P. G. Pronkin
Article
  • 3 Downloads

Primary photochemical processes in polymethine dye probes 3,3′-di(γ-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethylthiacarbocyanine betaine (DEC) and 3,3′,9-trimethylthiacarbocyanine iodide (Cyan 2) in micellar systems of bile-acid salts (BASs) sodium cholate, deoxycholate, and taurocholate and sodium dodecyl sulfate (SDS) as a reference are studied by flash photolysis. Signals due to photoisomerization of dye trans-isomers and dark reverse isomerization of the resulting cis-photoisomers are observed during pulse photolysis of air-saturated aqueous dye solutions in the presence of BAS and SDS micelles. The lifetimes of the photoisomers are 60–190 μs. Pulse photolysis of Cyan 2 and DEC solutions without oxygen and with BAS and SDS micelles induced photoisomerization and transition of the dyes into an excited triplet state followed by the reverse transition (intersystem crossing) into the initial singlet state. Triplet–triplet absorption spectra of these dyes isomers in polar (EtOH, i-PrOH) and nonpolar (dioxane) solvents were obtained for comparison using triplet–triplet energy transfer from anthracene. The conclusion was drawn that the photochemical behavior of the dyes in BAS and SDS micellar systems were similar.

Keywords

surfactants micelle bile-acid salts polymethine dye probes trans–cis photoisomerization triplet state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. McPhee, E. Scott, N. E. Levinger, and A. Van Orden, J. Phys. Chem. B, 115, 9585–9592 (2011).Google Scholar
  2. 2.
    M. I. Viseu, A. S. Tatikolov, R. F. Correia, and S. M. B. Costa, J. Photochem. Photobiol., A, 280, 54–62 (2014).Google Scholar
  3. 3.
    F. Moyano, S. S. Quintana, R. D. Falcone, J. J. Silber, and N. M. Correa, J. Phys. Chem. B, 113, 4284–4292 (2009).Google Scholar
  4. 4.
    S. S. Quintana, F. Moyano, R. D. Falcone, J. J. Silber, and N. M. Correa, J. Phys. Chem. B, 113, 6718–6724 (2009).Google Scholar
  5. 5.
    A. K. Chibisov, V. I. Prokhorenko, and H. Gorner, Chem. Phys., 250, 47–60 (1999).CrossRefGoogle Scholar
  6. 6.
    L. S. Atabekyan and A. K. Chibisov, Khim. Vys. Energ., 41, 122–128 (2007) [L. S. Atabekyan and A. K. Chibisov, High Energy Chem., 41, 91–96 (2007)].Google Scholar
  7. 7.
    A. S. Tatikolov and S. M. B. Costa, Photochem. Photobiol. Sci., 1, 211–218 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Datta, D. Mandal, S. K. Pal, and K. Bhattacharyya, Chem. Phys. Lett., 278, 77–82 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    S. Mukhopadhyay and U. Maitra, Curr. Sci., 87, 1666–1683 (2004).Google Scholar
  10. 10.
    G. Li and L. B. McGown, J. Phys. Chem., 98, 13711–13719 (1994).Google Scholar
  11. 11.
    K. Matsuoka and Y. Moroi, Biochim. Biophys. Acta, 1580, 189–199 (2002).CrossRefGoogle Scholar
  12. 12.
    R. Ninomiya, K. Matsuoka, and Y. Moroi, Biochim. Biophys. Acta, 1634, 116–125 (2003).CrossRefGoogle Scholar
  13. 13.
    K. Matsuoka, M. Suzuki, C. Honda, K. Endo, and Y. Moroi, Chem. Phys. Lipids, 139, 1–10 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Djavanbakht, K. M. Kale, and R. Zana, J. Colloid Interface Sci., 59, 139–148 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    B. Lindman, N. Kamenka, H. Fabre, J. Ulmius, and T. Wieloch, J. Colloid Interface Sci., 73, 556–565 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    A. S. Tatikolov, P. G. Pronkin, and I. G. Panova, Spectrochim. Acta, A, Spectral-fluorescent study of the interaction of polymethine dye probes with biological surfactants — bile salts, in press.Google Scholar
  17. 17.
    I. G. Panova, N. P. Sharova, S. B. Dmitrieva, R. A. Poltavtseva, G. T. Sukhikh, and A. S. Tatikolov, Anal. Biochem., 361, 183–189 (2007).CrossRefGoogle Scholar
  18. 18.
    A. S. Tatikolov, T. M. Akimkin, A. S. Kashin, and I. G. Panova, Khim. Vys. Energ., 44, 252–255 (2010) [A. S. Tatikolov, T. M. Akimkin, A. S. Kashin, and I. G. Panova, High Energy Chem., 44, 224–227 (2010)].Google Scholar
  19. 19.
    A. S. Tatikolov and I. G. Panova, Khim. Vys. Energ., 48, 116–122 (2014) [A. S. Tatikolov and I. G. Panova, High Energy Chem., 48, 87–92 (2014)].Google Scholar
  20. 20.
    T. M. Akimkin, A. S. Tatikolov, and S. M. Yarmoluk, Khim. Vys. Energ., 45, 252–259 (2011) [T. M. Akimkin, A. S. Tatikolov, and S. M. Yarmoluk, High Energy Chem., 45, 222–228 (2011)].Google Scholar
  21. 21.
    A. S. Tatikolov and S. M. B. Costa, Chem. Phys. Lett., 346, 233–240 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    A. K. Chibisov, G. V. Zakharova, and H. Gorner, Phys. Chem. Chem. Phys., 1, 1455–1460 (1999).CrossRefGoogle Scholar
  23. 23.
    V. Khimenko, A. K. Chibisov, and H. Gorner, J. Phys. Chem. A, 101, 7304–7310 (1997).Google Scholar
  24. 24.
    A. S. Tatikolov and S. M. B. Costa, Chem. Phys. Lett., 440, 73–78 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    R. Humphry-Baker, M. Gratzel, and R. Steiger, J. Am. Chem. Soc., 102, 847–848 (1980).Google Scholar
  26. 26.
    M. Y. Anikovsky, A. S. Tatikolov, and V. A. Kuzmin, Int. J. Photoenergy, 1, 35–39 (1999).CrossRefGoogle Scholar
  27. 27.
    M. Yu. Anikovskii, A. S. Tatikolov, L. A. Shvedova, and V. A. Kuz′min, Izv. Akad. Nauk, Ser. Khim., No. 7, 1134–1137 (2001) [M. Y. Anikovsky, A. S. Tatikolov, L. A. Shvedova, and V. A. Kuzmin, Russ. Chem. Bull., Int. Ed., 50, No. 7, 1190–1193 (2001)].Google Scholar
  28. 28.
    A. S. Tatikolov, T. M. Akimkin, P. G. Pronkin, and S. M. Yarmoluk, Chem. Phys. Lett., 556, 287–291 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.N. M. Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations