Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 37–41 | Cite as

Thermoluminescence of the Films, Nanocomposites, and Solutions of the Silicon Organic Polymer Poly(di-n-hexyl silane)

  • N. I. Ostapenko
  • O. A. Kerita
  • Yu. V. Ostapenko
Article
  • 7 Downloads

A comparative study of low-temperature thermoluminescence (5–120 K) of silicon organic polymer poly(di-n-hexyl silane) films, nanocomposites (when the polymer is introduced into nanopores of silica МСМ-41 and SBA-15 with diameter of pores 2.8 and 10 nm) as well as solutions of polymer in tetrahydrofuran with different concentrations from 10–3 to 10–5 mol/L was carried out. It was shown that it is possible to control the number of charge carrier traps, as well as their energy distribution by changing the diameter of silica nanopores. It is established that maxima and FWHMs of the thermoluminescence curves of nanocomposites significantly depend on the pore diameter of the nanoporous silica. This result agrees with the data obtained in the investigation of polymer solutions. In the nanocomposite with a minimum pore diameter (2.8 nm), the number and depth of the traps as well as dispersion of their energy are significantly reduced compared to their values in the polymer film.

Keywords

silicon organic polymer poly(di-n-hexyl silane) thermoluminescence nanosized silica diameter of pores film nanocomposite solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ostapenko, G. Telbiz, V. Ilyin, S. Suto, and A. Watanabe, Chem. Phys. Lett., 383, 456–461 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    N. Ostapenko, N. Kozlova, S. Suto, and A. Watanabe, Fiz. Nizk. Temp., 32, 1363–1371 (2006).Google Scholar
  3. 3.
    S. Mimura, H. Naito, Y. Kanemitsu, K. Matsukawa, and H. Jnoue, J. Organometal. Chem., 611, 40–44 (2000).CrossRefGoogle Scholar
  4. 4.
    A. Dementjev, V. Gulbinas, L. Valkunas, N. Ostapenko, S. Suto, and A. Watanabe, J. Phys. Chem. C, 111, 4717–4721 (2007).CrossRefGoogle Scholar
  5. 5.
    Nina Ostapenko, Nata Kozlova, Masato Nanjo, Kunio Mochida, and Shozo Suto, Phys. Status Solidi (c), 6, No. 1, 73–76 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    A. Kazlauskas, S. Dementjev, V. Gulbinas, L. Valkunas, P. Vitta, A. Zukauskas, N. Ostapenko, and S. Suto, Chem. Phys. Lett., 465, 261–264 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sharma, M. Katiyar, Deepak, S. Seki, and S. Tagawa, Appl. Phys. Lett., 8, 43511–43514 (2006).Google Scholar
  8. 8.
    H. Suzuki, H. Meyer, S. Hoshino, and D. Haarer, J. Appl. Phys., 78, 2684–2690 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    A. R. Porter, M. D. Towler, and R. J. Nedds, Phys. Rev. B, 64, 035320–5 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    H. Kishida, H. Tachibana, M. Matsumoto, and Y. Tokura, J. Appl. Phys., 78, 3362–3366 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    M. Fujiki, Chem. Phys. Lett., 198, 177–182 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    A. Watanabe, T. Sato, and M. Matsuda, Jpn. J. Appl. Phys., 40, 6457–6463 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Nakayama, H. Inagi, and M. Zhang, J. Appl. Phys., 86, 768–773 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    F. Schauer, L. Tkac, M. Ozvoldova, V. Nadazdy, K. Gmucova, K. Vegso, M. Tkacova, and J. Chlpik, J. Korean Phys. Soc., 68, 563–568 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    A. Watanabe, M. Nanyo, T. Sunaga, and A. Sekiguchi, J. Phys. Chem. A, 105, 6436–6442 (2001).CrossRefGoogle Scholar
  16. 16.
    N. Ostapenko, N. Kotova, V. Lukashenko, G. Telbiz, S. Suto, and A. Watanabe, Mol. Cryst. Liq. Cryst., 426, 149–156 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. I. Ostapenko
    • 1
  • O. A. Kerita
    • 1
  • Yu. V. Ostapenko
    • 1
  1. 1.Institute of Physics, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations