Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumes

  • Pedro M. Quelhas
  • Mafalda Trovão
  • Joana T. Silva
  • Adriana Machado
  • Tamára Santos
  • Hugo Pereira
  • João Varela
  • Manuel Simões
  • Joana L. SilvaEmail author


The photosynthetic efficiency (PE) and potential of Phaeodactylum tricornutum for CO2 mitigation in industrial tubular photobioreactors (PBRs) of different volumes were evaluated. A preliminary assay was performed at lab-scale to optimize the salt concentration of the culture medium. Interestingly, salinity did not affect the growth of P. tricornutum at concentrations of 2.5, 5, 10, and 20 g L−1. Higher volumetric productivities were achieved in the 2.5-m3 tubular PBR (0.235 g L−1 day−1), followed by 35- and 10-m3 PBRs. Maximum areal productivities corresponded to 48.5, 45.0, and 12.8 g m−2 day−1 for the 35-, 10-, and 2.5-m3 PBRs, respectively. PE was thus higher in the 35- and 10-m3 PBRs (2.21 and 2.08%, respectively). The 10- and 35-m3 PBR showed CO2 mitigation efficiencies of 60 and 41%, respectively, of the CO2 introduced into the PBR, corresponding to 2.3 and 2.5 g of fixed CO2 per g of biomass. Overall, cultivation of P. tricornutum couples high PE and areal productivity when the industrial PBRs were used, particularly PBRs of larger volumes. This improved PE performance with larger PBR volumes strongly suggests that large-scale cultivation of this diatom holds great potential for industrial CO2 mitigation.


Microalgae CO2 mitigation Photobioreactors Phaeodactylum tricornutum Industrial production 


Author contributions

PQ conceived, designed, and performed the experiments, interpreted the data with statistical expertise, prepared the figures/tables, and wrote the manuscript; MT, JTS, AM, and TS collected and assembled the data, prepared figures/tables, and drafted the manuscript; HP and JV designed the experiences, analyzed and interpreted the data, and critically revised the manuscript; MS and JLS designed the experiences, analyzed and interpreted the data, obtaining of funding or logistic support, and critically revised the manuscript. All authors have read the manuscript and approved this submission.

Funding information

The present work was funded by the Portuguese national budget P2020 in the scope of the project no. 023310 – ALGACO2: “Cultivo industrial de microalgas como tecnologia verde para captura de CO2 atmosférico” and CCMAR/Multi/04326/2013 grant of the Foundation for Science and Technology (FCT). H.P. (SFRH/BD/105541/2014) was funded by a PhD grant from FCT.


  1. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  2. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret JP, Chiovitti A, Choi CJ, Coesel S, de Martino A, Detter JC, Durkin C, Falciatore A, Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert Y, Kaplan A, Kröger N, Kroth PG, la Roche J, Lindquist E, Lommer M, Martin–Jézéquel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, Secq MPO–L, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, van de Peer Y, Grigoriev IV (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  3. Buono S, Colucci A, Angelini A, Langellotti AL, Massa M, Martello A, Fogliano V, Dibenedetto A (2016) Productivity and biochemical composition of Tetradesmus obliquus and Phaeodactylum tricornutum: effects of different cultivation approaches. J Appl Phycol 28:3179–3192CrossRefGoogle Scholar
  4. Callejón-Ferre AJ, Velázquez-Martí B, López-Martínez JA, Manzano-Agugliaro F (2011) Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renew Sust Energ Rev 15:948–955CrossRefGoogle Scholar
  5. Cornet JF (2010) Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach. Chem Eng Sci 65:985–998CrossRefGoogle Scholar
  6. De Martino A, Meichenin A, Shi J, Pan K, Bowler C (2007) Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J Phycol 43:992–1009CrossRefGoogle Scholar
  7. De Martino A, Bartual A, Willis A, Meichenin A, Villazán B, Maheswari U, Bowler C (2011) Physiological and molecular evidence that environmental changes elicit morphological interconversion in the model diatom Phaeodactylum tricornutum. Protist 162:462–481PubMedCrossRefGoogle Scholar
  8. Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 1st edn. Formatex Research Center, Badajoz, pp 1355–1366Google Scholar
  9. Fernández FGA, Hall DO, Guerrero EC, Rao KK, Grima EM (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J Biotechnol 103:137–152CrossRefGoogle Scholar
  10. García MCC, Sevilla JMF, Fernández FGA, Grima EM, Camacho FG (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. J Appl Phycol 12:239–248CrossRefGoogle Scholar
  11. Granum E, Kirkvold S, Myklestad SM (2002) Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar Ecol Prog Ser 242:83–94CrossRefGoogle Scholar
  12. Grognard F, Akhmetzhanov AR, Bernard O (2014) Automatica optimal strategies for biomass productivity maximization in a photobioreactor using natural light. Autom 50:359–368CrossRefGoogle Scholar
  13. Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M (2015) Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Mar Drugs 13:5993–6018PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hamilton ML, Warwick J, Terry A, Allen ML, Napier A, Sayanova O (2015) Towards the industrial production of Omega-3 long chain polyunsaturated fatty acids from a genetically modified diatom Phaeodactylum tricornutum. PLoS One 10:e0144054PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hamilton ML, Powers S, Napier JA, Sayanova O (2016) Heterotrophic production of omega-3 long-chain polyunsaturated fatty acids by trophically converted marine diatom Phaeodactylum tricornutum. Mar Drugs 14:53PubMedCentralCrossRefGoogle Scholar
  16. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hildebrand M, Davis AK, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240CrossRefGoogle Scholar
  18. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953PubMedCrossRefGoogle Scholar
  19. Laws EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnol Oceanogr 42:1552–1560CrossRefGoogle Scholar
  20. Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396PubMedGoogle Scholar
  21. Liang Y, Sun M, Tian C, Cao C, Li Z (2014) Effects of salinity stress on the growth and chlorophyll fluorescence of Phaeodactylum tricornutum and Chaetoceros gracilis (Bacillariophyceae). Bot Mar 57:469–476CrossRefGoogle Scholar
  22. Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14:191PubMedCentralCrossRefGoogle Scholar
  23. Marinho YF, Brito LO, Campos CVS, Severi W, Andrade HA, Galvez AO (2017) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164CrossRefGoogle Scholar
  24. Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158PubMedCrossRefGoogle Scholar
  25. Morais KCC, Vargas JVC, Mariano AB, Ordonez JC, Kava V (2016) Sustainable energy via biodiesel production from autotrophic and mixotrophic growth of the microalga Phaeodactylum tricornutum in compact photobioreactors. SusTechGoogle Scholar
  26. Myint MT, Ghassemi A, Nirmalakhandan N (2013) A generic stoichiometric equation for microalgae – microorganism nexus by using clarified domestic wastewater as growth medium. Desalin Water Treat 51:6632–6640CrossRefGoogle Scholar
  27. Nunez M, Quigg A (2016) Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations. J Appl Phycol 28:2123–2138CrossRefGoogle Scholar
  28. Pereira H, Barreira L, Mozes A, Florindo C, Polo C, Duarte CV, Custódio L, Varela J (2011) Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae. Biotechnol Biofuels 4:61PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pereira H, Polo C, Rešek E, Engelen A (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935PubMedPubMedCentralCrossRefGoogle Scholar
  30. Pereira H, Gangadhar KN, Schulze PSC, Santos T, Sousa CB, Schueler LM, Custódio L, Malcata FX, Gouveia L, Varela JCS, Barreira L (2016) Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 6:35663PubMedPubMedCentralCrossRefGoogle Scholar
  31. Pereira H, Páramo J, Silva J, Marques A, Barros A, Maurício D, Santos T, Schulze P, Barros R, Gouveia L, Barreira L, Varela J (2018) Scale-up and large-scale production of Tetraselmis sp. CTP4 (Chlorophyta) for CO2 mitigation: from an agar plate to 100-m3 industrial photobioreactors. Sci Rep 8:5112PubMedPubMedCentralCrossRefGoogle Scholar
  32. Pérez-lópez P, González-garcía S, Allewaert C, Verween A, Murray P, Feijoo G, Teresa M (2014) Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum. Sci Total Environ 466:991–1002PubMedCrossRefGoogle Scholar
  33. Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sust Energ Rev 16:3043–3053CrossRefGoogle Scholar
  34. Prestegard SK, Knutsen G, Herfindal L (2014) Adenosine content and growth in the diatom Phaeodactylum tricornutum (Bacillariophyceae): effect of salinity, light, temperature and nitrate. Diatom Res 29:37–41CrossRefGoogle Scholar
  35. Prestegard SK, Erga SR, Steinrücken P, Mjøs SA (2015) Specific metabolites in a Phaeodactylum tricornutum strain isolated from western Norwegian Fjord water. Mar Drugs 14:9PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rebolloso-Fuentes MM, Navarro-Pérez A, García-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972PubMedCrossRefGoogle Scholar
  37. Reis A, Gouveia L, Veloso V, Fernandes HL, Empis JA, Novais JM (1996) Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor. Bioresour Technol 55:83–88CrossRefGoogle Scholar
  38. Remmers IM, Martens DE, Wijffels RH, Lamers PP (2017) Dynamics of triacylglycerol and EPA production in Phaeodactylum tricornutum under nitrogen starvation at different light intensities. PLoS One 12:e0175630PubMedPubMedCentralCrossRefGoogle Scholar
  39. Robbins A (2016) How to understand the results of the climate change summit: conference of Parties21 (COP21) Paris 2015. J Public Health Policy 37:129–132PubMedCrossRefGoogle Scholar
  40. Rodolfi L, Biondi N, Guccione A, Bassi N, D'Ottavio M, Arganaraz G, Tredici MR (2017) Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors. Biotechnol Bioeng 104:2204–2210CrossRefGoogle Scholar
  41. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400PubMedCrossRefGoogle Scholar
  42. Santos MM, Moreno-Garrido I, Gonçalves F, Soares AMV, Ribeiro R (2002) An in situ bioassay for estuarine environments using the microalga Phaeodactylum tricornutum. Environ Toxicol Chem 21:567–574PubMedCrossRefGoogle Scholar
  43. Sayre R (2010) Microalgae: the potential for carbon capture. BioScience 60:722–727CrossRefGoogle Scholar
  44. Slegers PM, Van Beveren PJM, Wijffels RH, Van Straten G, Van Boxtel AJB (2013) Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy 105:395–406CrossRefGoogle Scholar
  45. Sobczuk TM, Camacho FG, Rubio FC, Fernández FCA, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475CrossRefGoogle Scholar
  46. Steinrücken P, Prestegard SK, De Vree JH, Storesund JE, Pree B, Mjøs SA, Erga SR (2018) Comparing EPA production and fatty acid profiles of three Phaeodactylum tricornutum strains under western Norwegian climate conditions. Algal Res 30:11–22PubMedPubMedCentralCrossRefGoogle Scholar
  47. Swanson D, Block R, Mousa SA (2012) Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr 3:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  48. Thaulow N, Sahu S (2004) Mechanism of concrete deterioration due to salt crystallization. Mater Charact 53:123–127CrossRefGoogle Scholar
  49. Thornton DCO (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur J Phycol 49:20–46CrossRefGoogle Scholar
  50. Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, Gałuszka A, Cearreta A, Edgeworth M, Ellis EC, Ellis M, Jeandel C, Leinfelder R, McNeill JR, Richter D, Steffen W, Syvitski J, Vidas D, Wagreich M, Williams M, Zhisheng A, Grinevald J, Odada E, Oreskes N, Wolfe AP (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351:137–148CrossRefGoogle Scholar
  51. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294PubMedCrossRefGoogle Scholar
  52. Yan N, Fan C, Chen Y, Hu Z (2016) The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci 17:E962PubMedCrossRefGoogle Scholar
  53. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425PubMedPubMedCentralGoogle Scholar
  54. Zhao P, Gu W, Wu S, Huang A, He L, Xie X, Gao S, Zhang B, Niu J, Lin AP, Wang G (2014) Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under under green light and low temperature. Sci Rep 4:3958PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Pedro M. Quelhas
    • 1
    • 2
  • Mafalda Trovão
    • 1
  • Joana T. Silva
    • 1
  • Adriana Machado
    • 1
  • Tamára Santos
    • 3
  • Hugo Pereira
    • 3
  • João Varela
    • 3
  • Manuel Simões
    • 2
  • Joana L. Silva
    • 1
    Email author
  1. 1.ALLMICROALGAE, Natural Products S.A.LisbonPortugal
  2. 2.LEPABE, Departamento de Engenharia QuímicaDa Universidade do PortoPortoPortugal
  3. 3.CCMAR - Centre of Marine SciencesUniversity of AlgarveFaroPortugal

Personalised recommendations