Advertisement

Impact of microalgae culture conditions over the capacity of copper nanoparticle biosynthesis

  • Gerardo Salas-Herrera
  • Susana González-Morales
  • Adalberto Benavides-Mendoza
  • Adali O. Castañeda-Facio
  • Fabián Fernández-Luqueño
  • Armando Robledo-OlivoEmail author
Article

Abstract

The biosynthesis of metallic nanoparticles (NPs) has been previously reported using a variety of organic molecules produced by microalgae. However, the results obtained could vary due to the metabolic responses that microalgae have to different culture conditions which could affect the characteristics of the produced nanoparticles. In the present report, copper nanoparticle formation was evaluated by the microalgae Chlorella kessleri, Dunaliella tertiolecta, and Tetraselmis suecica, developed under combined conditions of low (L−) and high (L+) illumination, with low (S−) and high salinity (S+). The illumination was 12 h:12 h light/dark. NP formation was evaluated 72 h after exposure to copper salt. Cupric oxide (CuO) NPs were detected spectrophotometrically in both the culture media (extracellular NPs) and cells (intracellular NPs) of Ch. kessleri with absorbance in the range of 200 to 235 nm. Metallic copper NPs (Cun) were detected with an absorbance between 540 and 560 nm in treatments with cells of C. kessleri and D. tertiolecta which were grown in L+S−, while T. suecica cells showed Cun NPs formations in L−S−, L−S+, and L+S−. The size difference of the NPs was measured by scanning electron microscopy (SEM), in treatments with cells of C. kessleri, ranging in size from 15 to 25 nm (L−S−) and 55 to 65 nm (L+S−). In treatments with culture media, sizes from 35 to 45 nm (L−S−) of NPs were obtained. Differences in the biosynthesis of Cu-based NPs are possible, depending on the culture conditions and the strain of microalgae to be utilized.

Keywords

Phyconanotechnology Chlorella kessleri Dunaliella tertiolecta Tetraselmis suecica Salt stress Cupric oxide 

Notes

Acknowledgments

The authors want to thank Biorganix Mexicana who kindly provided the strains Dunaliella tertiolecta and Tetraselmis suecica.

Funding information

Gerardo Salas-Herrera was supported by “Consejo Nacional de Ciencia y Tecnología” México for the scholarship granted to his doctoral studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2013) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576CrossRefGoogle Scholar
  2. Barbarino E, Lourenço SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J Appl Phycol 17:447–460CrossRefGoogle Scholar
  3. Barwal I, Ranjan P, Kateriya S, Yadav S (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56CrossRefGoogle Scholar
  4. Bouazizi N, Bargougui R, Oueslati A, Benslama R (2015) Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett 6:158–164CrossRefGoogle Scholar
  5. Brahmachari G, Sarkar S, Ghosh R, Barman S, Mandal NC, Jash SK, Banerjee B, Roy R (2014) Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Org Med Chem Lett 4:18.  https://doi.org/10.1186/s13588-014-0018-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cirulis JT, Scott JA, Ross GM (2013) Management of oxidative stress by microalgae. Can J Physiol Pharmacol 91:15–21CrossRefGoogle Scholar
  7. Dahoumane S, Jeffryes C, Mechouet M, Agathos S (2017) Biosynthesis of inorganic nanoparticles: a fresh look at the control of shape, size and composition. Bioengineering 4:4010014CrossRefGoogle Scholar
  8. Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC (2011) Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci Nanosci Nanotechnol 2:015009CrossRefGoogle Scholar
  9. Davidi L, Katz A, Pick U (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta 236:19–33CrossRefGoogle Scholar
  10. Debelius B, Forja JM, DelValls A, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513CrossRefGoogle Scholar
  11. Fox J, Weisberg S (2011) An R companion to applied regression. second edition. Sage, Thousand OaksGoogle Scholar
  12. García F, Freile-Pelegrín Y, Robledo D (2007) Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. Bioresour Technol 98:1359–1365CrossRefGoogle Scholar
  13. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116:3722–3811CrossRefGoogle Scholar
  14. Gimmler H (2000) Primary sodium plasma membrane ATPases in salttolerant algae: facts and fictions. J Exp Bot 51:1171–1178CrossRefGoogle Scholar
  15. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239CrossRefGoogle Scholar
  16. Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Tech 1:6–11Google Scholar
  17. Henriques M, Silva A, Rocha J (2007) Extraction and quantification of pigments from a marine microalga: a simple and reproducible method. In: Méndez-Vilas (ed) Communicating Current Research and Educational Topics and Trends in Applied Microbiology. Formatex, Badajoz, pp 586–593Google Scholar
  18. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533CrossRefGoogle Scholar
  19. Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19:661–666CrossRefGoogle Scholar
  20. Levy JL, Angel BM, Stauber JL, Poon WL, Simpson SL, Cheng SH, Jolley DF (2008) Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species. Aquat Toxicol 89:82–93CrossRefGoogle Scholar
  21. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 270974:1–16Google Scholar
  22. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592CrossRefGoogle Scholar
  23. Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14:191CrossRefGoogle Scholar
  24. López A, Rico M, Santana-Casiano JM, González AG, González-Dávila M (2015) Phenolic profile of Dunaliella tertiolecta growing under high levels of copper and iron. Environ Sci Pollut Res 22:14820–14828CrossRefGoogle Scholar
  25. Mendiburu F (2016) agricolae: Statistical Procedures for Agricultural Research. R package version 1.2–0. http://CRAN.R-project.org/package=agricolae; searched on 25 September 2017
  26. Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969CrossRefGoogle Scholar
  27. Moheimani NR (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176CrossRefGoogle Scholar
  28. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1:149–152PubMedPubMedCentralGoogle Scholar
  29. Morales-Díaz AB, Juárez-Maldonado A, Morelos-Moreno Á, González-Morales S, Benavides-Mendoza A (2016) Biofabricación de nanopartículas de metales usando células vegetales o extractos de plantas. Rev Mex Cienc Agríc 7:1211–1224Google Scholar
  30. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119CrossRefGoogle Scholar
  31. Pestryakov AN, Petranovskii VP, Kryazhov A, Ozhereliev O, Pfander N, Knop-Gericke A (2004) Study of copper nanoparticles formation on supports of different nature by UV-visible diffuse reflectance spectroscopy. Chem Phys Lett 385:173–176CrossRefGoogle Scholar
  32. Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nano particles by using Phormidium cyanobacterium. Indo J Chem 9:355–360CrossRefGoogle Scholar
  33. Raposo MFJ, De Morais RMSC, De Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252CrossRefGoogle Scholar
  34. Sabatini SE, Juárez AB, Eppis MR, Bianchi L, Luquet CM, Ríos de Molina MDC (2009) Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol Environ Saf 72:1200–1206CrossRefGoogle Scholar
  35. Salas-Herrera G, Benavides-Mendoza A, Zermeño-González A, Orta-Dávila A, Sánchez-Pérez FJ (2015) Evaluación de microalgas para la producción de biomasa económicamente útil usando aguas producidas. Rev Mex Cienc Agríc 12:2423–2435Google Scholar
  36. Shabnam N, Pardha-Saradhi P (2013) Photosynthetic electron transport system promotes synthesis of Au-nanoparticles. PLoS One 8:e71123CrossRefGoogle Scholar
  37. Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308CrossRefGoogle Scholar
  38. Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3:374–383Google Scholar
  39. Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact—a review. Int J Pharm Sci Invent 3:28–38Google Scholar
  40. Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett 11:363–363CrossRefGoogle Scholar
  41. Simionato D, Sforza E, Corteggiani Carpinelli E, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102:6026–6032CrossRefGoogle Scholar
  42. Singh Sekhon B (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53CrossRefGoogle Scholar
  43. Singh J, Kaur G, Rawat M (2016) A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. Nanotechnol Sci Appl 1:1–9Google Scholar
  44. Subramanian S, Valantina R, Ramanathan C (2015) Structural and electronic properties of electrodeposited heterojunction of CuO, CuO2 and Cu2O nanoclusters a DFT approach. Mater Sci 21:173–178Google Scholar
  45. Sudha SS, Rajamanickam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 52:393–399Google Scholar
  46. Sun J, Liu D (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25:1331–1346CrossRefGoogle Scholar
  47. Suresh Y, Annapurna S, Bhikshamaiah G, Singh AK (2016) Green luminescent copper nanoparticles. J Bioelectron Nanotechnol 149:012187Google Scholar
  48. Team RS (2016) RStudio: Integrated Development for R. RStudio, Inc, Boston, MA. http://www.rstudio.com; searched on September 2017
  49. Valli G, Suganya M (2015) Green synthesis of copper nanoparticles using Cassia fistula flower extract. J Bio Innov 4:162–170Google Scholar
  50. Wan J-K, Chu W-L, Kok Y-Y, Cheong K-W (2018) Assessing the toxicity of copper oxide nanoparticles and copper sulfate in a tropical Chlorella. J Appl Phycol 30:3153–3165CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gerardo Salas-Herrera
    • 1
  • Susana González-Morales
    • 1
  • Adalberto Benavides-Mendoza
    • 1
  • Adali O. Castañeda-Facio
    • 2
  • Fabián Fernández-Luqueño
    • 3
  • Armando Robledo-Olivo
    • 4
    Email author
  1. 1.Horticulture DepartmentUniversidad Autónoma Agraria Antonio Narro, Unidad SaltilloSaltilloMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de Coahuila, Unidad SaltilloSaltilloMexico
  3. 3.Sustainability of Natural Resources and Energy, Avenida Industrial Metalúrgica No. 1062, Parque Industrial Saltillo-Ramos ArizpeCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalRamos ArizpeMexico
  4. 4.Food Science & Technology DepartmentUniversidad Autónoma Agraria Antonio Narro, Unidad SaltilloSaltilloMexico

Personalised recommendations