Advertisement

Agar extraction from Pyropia haitanensis residue after the removal and purification of phycobiliproteins

  • Ping Zhao
  • Jianfeng Niu
  • Li Huan
  • Wenhui Gu
  • Mingjiang Wu
  • Guangce WangEmail author
Article

Abstract

Pyropia haitanensis is one of the most important and commercial species of edible seaweed in China. However, at its late growth stages it is unsuitable for food processing and is usually treated as waste. The present study investigated the full use of aging Py. haitanensis and attempted to improve its economic value through the purification of R-phycoerythrin combining the extraction of agar from the dry residue after phycobiliprotein extraction. The recovery of R-phycoerythrin from crude extract was 12.12% with a purification ratio of > 4. The agar yield was 5.81% with a gel strength of 796.00 ± 28.10 g cm−2, a gelling temperature of 38.10 ± 0.22 °C, a melting temperature of 89.50 ± 0.55 °C, 3,6-anhydrogalactose content of 34% ± 3.16%, and sulfate content of 3.01% ± 0.24%. There were no significant differences between these parameters and those from the direct extraction of Py. haitanensis. The agar extracted exhibited some physicochemical properties that have industrial applications. It could also be used as a material for DNA electrophoresis and a bacterial culture medium. This new method of comprehensive extraction reduced use of water and alkali, and waste liquid output, which were 36.52 L, 0.40 L, and 39.15 L, respectively, less than that from direct Py. haitanensis extraction. Total nitrogen, suspended solids, phosphorus, ammonia-nitrogen, chemical oxygen demand, and biochemical oxygen demand of the extract after 5 days were 38.37 mg, 4.72 × 103 mg, 62.82 mg, 18.32 mg, 8.46 × 103 mg, and 2.21 × 103 mg, respectively, less than that directly from Py. haitanensis.

Keywords

Pyropia haitanensis Expanded bed adsorption R-phycoerythrin Agar 

Notes

Funding information

The research was supported by the National Key Research and Development Program of China (No. 2016YFC1400606) and the Natural Science Foundation of China (No. 31470430 and No. 41876197).

References

  1. Abe M, Kobayashi M, Fujiyoshi E, Tamaki M, Kikuchi N, Murase N (2013) Use of PCR-RFLP for the discrimination of Japanese Porphyra and Pyropia species (Bangiales, Rhodophyta). J Appl Phycol 25:225–232CrossRefGoogle Scholar
  2. Armisen R (1995) World-wide use and importance of Gracilaria. J Appl Phycol 7:231–243CrossRefGoogle Scholar
  3. Bermejo R, Acién FG, Ibáñez MJ, Fernández JM, Molina E, Alvarez-Pez JM (2003) Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatogr A 790:317–325Google Scholar
  4. Chen X, Wu M, Yang Q, Wang S (2017) Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. LWT Food Sci Technol 77:468–474CrossRefGoogle Scholar
  5. Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. J Sci 323:1014–1015CrossRefGoogle Scholar
  6. Craigie JS, Wen ZC (1984) Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can J Bot 62:1665–1670CrossRefGoogle Scholar
  7. Donati M, Francesco AD, Delucca F, Paolo MD, Battilani M, Balboni A, Baldelli R, Cevenini R (2011) Antibody-neutralizing activity against all urogenital Chlamydia trachomatis serovars in Chlamydia suis-infected pigs. FEMS Immunol Med Microbiol 61:125–128CrossRefGoogle Scholar
  8. Fisheries Bureau of Ministry of Agriculture, China (2017) China Fishery Statistical Yearbook. China Agriculture Press, BeijingGoogle Scholar
  9. Freile-Pelegrín Y, Murano E (2005) Agars from three species of Gracilaria (Rhodophyta) from Yucatán peninsula. Bioresour Technol 96:295–302CrossRefGoogle Scholar
  10. Freile-Pelegrín Y, Robledo D (1997) Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatán, México. Bot Mar 40:285–290CrossRefGoogle Scholar
  11. Galland-Irmouli AV, Pons L, Luçon M, Villaume C, Mrabet NT, Guéant JL, Fleurence J (2000) One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J Chromatogr B 739:117–123CrossRefGoogle Scholar
  12. Gao H, Ji M, Cao W (1993) Comparative studies on structural feature of agar polysaccharides from Porphyra haitanensis grown in south and North China. J Oceanol Limnol 11:25–33CrossRefGoogle Scholar
  13. Glazer AN, Lundell DJ, Yamanaka G, Williams RC (1983) The structure of a ‘simple’ phycobilisome. Annales de l'InstitutPasteur / Microbiologie 134:159–180CrossRefGoogle Scholar
  14. Jeon Y-J, Athukorala Y, Lee J-H (2005) Characterization of agarose product from agar using DMSO. Algae 20:61–67CrossRefGoogle Scholar
  15. Kang T-H, Lee S-H, Baik J-S, Kang B-S, Lee J-S, Lee N-H, Jeon Y-J (2011) Preparation of commercial agarose from Jeju seaweed, Gelidium amansii using DMSO extraction and EDTA washing. Kor J Fish Aquat Sci 44:635–643 (Korean with English abstract)Google Scholar
  16. Kannaujiya VK, Sinha RP (2016) Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J Appl Phycol 28:1063–1070CrossRefGoogle Scholar
  17. Kumar V, Fotedar R (2009) Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydr Polym 78:813–819CrossRefGoogle Scholar
  18. Lee W-K, Lim Y-Y, Leow AT-C, Namasivayam P, Abdullah JO, Ho C-L (2017) Biosynthesis of agar in red seaweeds: a review. Carbohydr Polym 164:23–30CrossRefGoogle Scholar
  19. Liu L-N, Chen X-L, Zhang X-Y, Zhang Y-Z, Zhou B-C (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116:91–100CrossRefGoogle Scholar
  20. Manirafasha E, Ndikubwimana T, Zeng XH, Lu YH, Jing KJ (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296CrossRefGoogle Scholar
  21. Marinho-Soriano E, Bourret E (2003) Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour Technol 90:329–333CrossRefGoogle Scholar
  22. Mu K-F, Wu Y-P, Chen Z-H, Chen J, Yang F, Zhu P (2009) Production process of agar from laver Porphyra haitanensis. Fish Sci 8:010Google Scholar
  23. Murano E (1995) Chemical structure and quality of agars from Gracilaria. J Appl Phycol 7:245–254CrossRefGoogle Scholar
  24. Niu J-F, Wang G-C, Tseng C-K (2006) Purification method for large-scale isolation and purification of R-phycoerythrin from red alga Polysiphonia urceolata Grev. Protein Expr Purif 49:23–31CrossRefGoogle Scholar
  25. Niu J-F, Wang G-C, Zhou B-C, Lin X-Z, Chen C-S (2007) Purification of R-phycoerythrin from Porphyra haitanensis (Bangiales, Rhodophyta) using expanded-bed absorption. J Phycol 43:1339–1347CrossRefGoogle Scholar
  26. Niu J-F, Chen Z-F, Wang G-C, Zhou B-C (2010) Purification of phycoerythrin from Porphyra yezoensis Ueda (Bangiales, Rhodophyta) using expanded bed absorption. J Appl Phycol 22:25–31CrossRefGoogle Scholar
  27. Niu J, Xu M, Wang G, Zhang K, Peng G (2013) Comprehensive extraction of agar and R-phycoerythrin from Gracilaria lemaneiformis (Bangiales, Rhodophyta). Indian J Geo-Mar Sci 42:21–28Google Scholar
  28. Pereira-Pacheco F, Robledo D, Rodríguez-Carvajal L, Freile-Pelegrín Y (2007) Optimization of native agar extraction from Hydropuntia cornea from Yucatán, México. Bioresour Technol 98:1278–1284CrossRefGoogle Scholar
  29. Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88CrossRefGoogle Scholar
  30. Ramos A, Acién FG, Fernández-Sevilla JM, Gonzalez CV, Bermejo R (2010) Large-scale isolation and purification of C-phycocyanin from the cyanobacteria Anabaena marina using expanded bed adsorption chromatography. J Chem Technol Biotechnol 85:783–792CrossRefGoogle Scholar
  31. Redlinger T, Gantt E (1981) Phycobilisome structure of Porphyridium cruentum: polypeptide composition. Plant Physiol 68:1375–1379CrossRefGoogle Scholar
  32. Remirez D, Fernandez V, Tapia G, González R, Videla LA (2002) Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and Kupffer cell functioning. Inflamm Res 51:351–356CrossRefGoogle Scholar
  33. Richa KVK, Kesheri M, Singh G, Sinha RP (2011) Biotechnological potentials of phycobiliproteins. Int J Pharm Bio Sci 2:446–454Google Scholar
  34. Rossano R, Ungaro N, D'Ambrosio A, Liuzzi GM, Riccio P (2003) Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 101:289–293CrossRefGoogle Scholar
  35. Santos R, Melo RA (2018) Global shortage of technical agars: back to basics (resource management). J Appl Phycol 30:2463–2473CrossRefGoogle Scholar
  36. Sasuga K, Yamanashi T, Nakayama S, Ono S, Mikami K (2017) Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Res 26:123–130CrossRefGoogle Scholar
  37. Sousa AMM, Alves VD, Morais S, Delerue-Matos C, Gonçalves MP (2010) Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology. Bioresour Technol 101:3258–3267CrossRefGoogle Scholar
  38. Villanueva RD, Sousa AMM, Gonçalves MP, Nilsson M, Hilliou I (2010) Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J Appl Phycol 22:211–220CrossRefGoogle Scholar
  39. Wang L, Liu L, Wang Y, Yuan Q, Li Z, Xu Z (2001) Comparative research on the structures and physical-chemical properties of agars from several agarophyta. Oceanol Limnol Sin 32:658–664Google Scholar
  40. Wang G, Sun H, Fan X, Tseng C (2002) Large-scale isolation and purification of R-phycoerythrin from red alga Palmaria palmata using the expanded bed adsorption method. Acta Bot Sin 44:541–546Google Scholar
  41. Wang T-P, Chang L-L, Chang S-N, Wang E-C, Hwang L-C, Chen Y-H, Wang Y-M (2012) Successful preparation and characterization of biotechnological grade agarose from indigenous Gelidium amansii of Taiwan. Process Biochem 47:550–554CrossRefGoogle Scholar
  42. Wang Y, Gong X, Wang S, Chen L, Sun L (2014a) Separation of native allophycocyanin and R-phycocyanin from marine red macroalga Polysiphonia urceolata by the polyacrylamide gel electrophoresis performed in novel buffer systems. PLoS One 9:e106369CrossRefGoogle Scholar
  43. Wang L, Qu Y, Fu X, Zhao M, Wang S, Sun L (2014b) Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga Polysiphonia urceolata. PLoS One 9:e87833CrossRefGoogle Scholar
  44. Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13:143–148CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ping Zhao
    • 1
    • 2
    • 3
    • 4
  • Jianfeng Niu
    • 1
    • 2
    • 4
  • Li Huan
    • 1
    • 2
    • 4
  • Wenhui Gu
    • 1
    • 2
    • 4
  • Mingjiang Wu
    • 5
  • Guangce Wang
    • 1
    • 2
    • 4
    Email author
  1. 1.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoPeople’s Republic of China
  5. 5.College of Life and Environmental ScienceWenzhou UniversityWenzhouChina

Personalised recommendations