Statistical optimization of lipid production by the diatom Gyrosigma sp. grown in industrial wastewater

  • Natanamurugaraj Govindan
  • Gaanty Pragas Maniam
  • Mashitah M. Yusoff
  • Mohd Hasbi Ab. Rahim
  • Tawan Chatsungnoen
  • Rameshprabu Ramaraj
  • Yusuf ChistiEmail author


The marine diatom Gyrosigma sp. was cultured in a medium comprised of inorganic nutrients dissolved in palm oil mill effluent (POME) wastewater. The production of lipids in the biomass was optimized using a statistical design of experiments in combination with the response surface method. The experimental factors were incident light level and initial concentrations of nitrate, phosphate, and silicate in the medium in batch culture. At 25 ± 2 °C, the maximum lipid content in the biomass harvested at the end of a 12-day batch culture was 70.7 ± 6.0% by dry weight for the following values of the experimental factors: an incident light level of 131 μmol photons m−2 s−1, a nitrate concentration of 1.8 mg L−1 (29.0 μM), a phosphate concentration of 6.8 mg L−1 (71.6 μM), and a silicate concentration of 10.1 mg L−1 (132.7 μM). Under the optimized conditions, the maximum dry mass concentration of the diatom was 560 mg L−1 on day 8 of a batch culture, declining to ~409 mg L−1 on day 12. For the 12-day batch operation, the final average productivities of the biomass and the lipids were 34.1 ± 5.5 mg L−1 day−1 and 24.1 ± 0.2 mg L−1 day−1, respectively. The fatty acids in the algal lipids were found to be as follows (%, w/w of total lipids): palmitic acid (48.6%), eicosapentaenoic acid (10.6%), myristic acid (8.1%), stearic acid (8.0%), linoleic acid (7.5%), oleic acid (6.4%), and linolenic acid (5.8%). The response surface model predicted the lipid content in the biomass with a high degree of confidence.


Bacillariophyceae Gyrosigma sp. Marine diatom Industrial wastewater Statistical optimization Eicosapentaenoic acid 



The Central Laboratory of UMP is acknowledged for allowing access to SEM and GCMS instruments and providing technical assistance with sample preparation and analyses. Stat-Ease, Inc., Minneapolis, USA, is thanked for providing the statistics software used.

Funding information

The authors gratefully acknowledge Universiti Malaysia Pahang (UMP) for financial support through the Internal Research Grant No. RDU1703167 and Flagship Grant No. RDU182205.


  1. Admiraal W (1977) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9CrossRefGoogle Scholar
  2. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefPubMedCentralGoogle Scholar
  3. Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzym Microb Technol 26:516–529CrossRefGoogle Scholar
  4. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedPubMedCentralCrossRefGoogle Scholar
  6. Borowitzka MA, Moheimani NR (eds) (2013) Algae for biofuels and energy. Springer, DordrechtGoogle Scholar
  7. Bouyam S, Choorit W, Sirisansaneeyakul S, Chisti Y (2017) Heterotrophic production of Chlorella sp. TISTR 8990—biomass growth and composition under various production conditions. Biotechnol Prog 33:1589–1600PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brzezinski MA, Villareal TA, Lipschultz F (1998) Silica production and the contribution of diatoms to new and primary production in the central North Pacific. Mar Ecol Prog Ser 167:89–104CrossRefGoogle Scholar
  9. Bux F, Chisti Y (eds) (2016) Algae biotechnology: products and processes. Springer, New YorkGoogle Scholar
  10. Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, Chisti Y (2004) Fermentation optimization for the production of lovastatin by Aspergillus terreus: use of response surface methodology. J Chem Technol Biotechnol 79:1119–1126CrossRefGoogle Scholar
  11. Cerón García MC, García Camacho F, Sánchez Mirón A, Fernández Sevilla JM, Chisti Y, Molina Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689–694Google Scholar
  12. Chatsungnoen T, Chisti Y (2016a) Oil production by six microalgae: impact of flocculants and drying on oil recovery from the biomass. J Appl Phycol 28:2697–2705CrossRefGoogle Scholar
  13. Chatsungnoen T, Chisti Y (2016b) Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res 15:100–109CrossRefGoogle Scholar
  14. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chisti Y (2013a) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chisti Y (2013b) Raceways-based production of algal crude oil. Green 3:195–216CrossRefGoogle Scholar
  17. Collos Y (1998) Nitrate uptake, nitrite release and uptake, and new production estimates. Mar Ecol Prog Ser 171:293–301CrossRefGoogle Scholar
  18. Collyer DM, Fogg GE (1955) Studies on fat accumulation by algae. J Exp Bot 6:256–275CrossRefGoogle Scholar
  19. Conley DJ, Kilham SS (1989) Differences in silica content between marine and freshwater diatoms. Limnol Oceanogr 34:205–213CrossRefGoogle Scholar
  20. DeNicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433:111–122CrossRefGoogle Scholar
  21. Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:article 52PubMedCrossRefPubMedCentralGoogle Scholar
  22. Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:53–60CrossRefGoogle Scholar
  23. Flynn KJ, Martin-Jézéquel V (2000) Modelling Si–N-limited growth of diatoms. J Plankton Res 22:447–472CrossRefGoogle Scholar
  24. Ghoshal G, Banerjee UC, Chisti Y, Shivhare US (2012) Optimization of xylanase production from Penicillium citrinum in solid-state fermentation. Chem Biochem Eng Q 26:61–69Google Scholar
  25. Gilstad M, Sakshaug E (1990) Growth rates of ten diatom species from the Barents Sea at different irradiances and day lengths. Mar Ecol Prog Ser 64:169–173CrossRefGoogle Scholar
  26. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  27. Grothe E, Moo-Young M, Chisti Y (1999) Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic. Enzym Microb Technol 25:132–141CrossRefGoogle Scholar
  28. Hendey NI (1964) An introductory account of the smaller algae of British coastal waters, part V, Bacillariophyceae (diatoms). HMSO, LondonGoogle Scholar
  29. Hervé V, Derr J, Douady S, Quinet M, Moisan L, Lopez PJ (2012) Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS One 7:e46722PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hustedt F (1930) Die Süsswasser-Flora Mitteleuropas: Heft 10: Bacillariophyta (Diatomeae), 2nd edn. Verlag Von Gustav Fischer, Jena, p 466Google Scholar
  32. Jayakumar S, Yusoff MM, Rahim MHA, Maniam GP, Govindan N (2017) The prospect of microalgal biodiesel using agro-industrial and industrial wastes in Malaysia. Renew Sust Energ Rev 72:33–47CrossRefGoogle Scholar
  33. Kociolek JP, Graeff CL, Lowe RL (2010) A new freshwater Gyrosigma (Bacillariophyceae) species from Hawaii. Pol Bot J 55:65–71Google Scholar
  34. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2017) Potential applications of diatoms in medicinal and therapeutic approaches—a review. Indian J Geomarine Sci 46:663–667Google Scholar
  35. Lebeau T, Robert J-M (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl Microbiol Biotechnol 60:624–632PubMedCrossRefPubMedCentralGoogle Scholar
  36. Leterme SC (2015) The oil production capacity of diatoms. Ann Aquac Res 2:article 1007Google Scholar
  37. Levine IA, Fleurence J (eds) (2018) Microalgae in health and disease prevention. Academic, LondonGoogle Scholar
  38. Lewin J, Hellebust JA (1970) Heterotrophic nutrition of the marine pennate diatom, Cylindrotheca fusiformis. Can J Microbiol 16:1123–1129PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefPubMedCentralGoogle Scholar
  40. Luangpipat T, Chisti Y (2017) Biomass and oil production by Chlorella vulgaris and four other microalgae—effects of salinity and other factors. J Biotechnol 257:47–57PubMedCrossRefPubMedCentralGoogle Scholar
  41. Maddox IS, Reichert SH (1997) Use of response surface methodology for the rapid optimization of microbiological media. J Appl Bacteriol 43:197–204CrossRefGoogle Scholar
  42. Mazzuca Sobczuk T, Chisti Y (2010) Potential fuel oils from the microalga Choricystis minor. J Chem Technol Biotechnol 85:100–108CrossRefGoogle Scholar
  43. Molina Grima E, Belarbi E-H, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515PubMedCrossRefPubMedCentralGoogle Scholar
  44. Montagnes DJS, Franklin DJ (2001) Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanogr 46:2008–2018CrossRefGoogle Scholar
  45. Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS One 9:e95412PubMedPubMedCentralCrossRefGoogle Scholar
  46. Munir M, Qureshi R, Arshad M, Chaudhry AK, Laghari MK (2012) Taxonomic study of Bacillariophyta from Kallar Kahar lake Chakwal, Punjab, Pakistan. Pak J Bot 44:1805–1814Google Scholar
  47. Nalewajko C (1966) Dry weight, ash, and volume data for some freshwater planktonic algae. J Fish Res Board Can 23:1285–1288CrossRefGoogle Scholar
  48. Okamoto N, Nagumo T, Tanaka J, Inouye I (2003) An endophytic diatom Gyrosigma coelophilum sp. nov. (Naviculales, Bacillariophyceae) lives inside the red alga Coelarthrum opuntia (Rhodymeniales, Rhodophyceae). Phycologia 42:498–505CrossRefGoogle Scholar
  49. Okogwu IO, Ugwumba AO (2013) Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in southeast Nigeria. Rev Biol Trop 61:1827–1840PubMedPubMedCentralGoogle Scholar
  50. Pandey A, Chang J-S, Soccol CR, Lee DJ, Chisti Y (eds) (2019) Biofuels from algae, second edn. Elsevier, Amsterdam, p 579Google Scholar
  51. Patel G, Patil MD, Soni S, Khobragade TP, Chisti Y, Banerjee UC (2016) Production of mycophenolic acid by Penicillium brevicompactum—a comparison of two methods of optimization. Biotechnol Reports 11:77–85CrossRefGoogle Scholar
  52. Patil MD, Dev MJ, Tangadpalliwar S, Patel G, Garg P, Chisti Y, Banerjee UC (2017) Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: kinetics and predictive models. Bioresour Technol 233:74–83PubMedCrossRefPubMedCentralGoogle Scholar
  53. Posten C, Walter C (eds) (2012a) Microalgal biotechnology: potential and production. de Gruyter, BerlinGoogle Scholar
  54. Posten C, Walter C (eds) (2012b) Microalgal biotechnology: integration and economy. de Gruyter, BerlinGoogle Scholar
  55. Rosly NF, Abdul Razak RA, Kuppusamy P, Yusoff MMY, Govindan N (2013) Induction of bioactive compound composition from marine microalgae (Lyngbya sp.) by using different stress condition. J Coast Life Med 1:205–209Google Scholar
  56. Sánchez Mirón A, Cerón García M-C, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297CrossRefGoogle Scholar
  57. Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA (2017) Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B 372:20160407CrossRefGoogle Scholar
  58. Scholz B, Liebezeit G (2013) Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthörn tidal flat (southern North Sea). J Appl Phycol 25:453–465CrossRefGoogle Scholar
  59. Shene C, Chisti Y, Bustamante M, Rubilar M (2016a) Effect of CO2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata: experimental study and mathematical modeling of CO2 assimilation. Algal Res 13:16–29CrossRefGoogle Scholar
  60. Shene C, Chisti Y, Vergara D, Burgos C, Rubilar M, Bustamante M (2016b) Production of eicosapentaenoic acid by Nannochloropsis oculata: effects of carbon dioxide and glycerol. J Biotechnol 239:47–56PubMedCrossRefPubMedCentralGoogle Scholar
  61. Shene C, Asenjo JA, Chisti Y (2018) Metabolic modelling and simulation of the light and dark metabolism of Chlamydomonas reinhardtii. Plant J 96:1076–1088PubMedCrossRefPubMedCentralGoogle Scholar
  62. Stumm W, Morgan JJ (1996) Aquatic chemistry: Chemical equilibria and rates in natural waters, third edn. Wiley, New YorkGoogle Scholar
  63. Tanaka N (1984) The cell division rates of ten species of attaching diatoms in natural seawater. Nippon Suisan Gakkaishi 50:969–972CrossRefGoogle Scholar
  64. Taraldsvik M, Myklestad S (2000) The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur J Phycol 35:189–194CrossRefGoogle Scholar
  65. Thaler M, Kaczmarska I (2009) Gyrosigma orbitum sp. nov. (Bacillariophyta) from a salt marsh in the Bay of Fundy, eastern Canada. Bot Mar 52:60–68CrossRefGoogle Scholar
  66. Tuchman NC, Schollett MA, Rier ST, Geddes P (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 561:167–177CrossRefGoogle Scholar
  67. Unpaprom Y, Tipnee S, Ramraj R (2015) Biodiesel from green alga Scenedesmus acuminatus. Int J Sustain Green Energy 4:1–6CrossRefGoogle Scholar
  68. Wang L-C, Lee T-Q, Chen S-H, Wu J-T (2010) Diatoms in Liyu lake, eastern Taiwan. Taiwania 55:228–242Google Scholar
  69. Wee LL, Annuar MSM, Ibrahim S, Chisti Y (2011) Enzyme-mediated production of sugars from sago starch: statistical process optimization. Chem Eng Commun 198:1339–1353CrossRefGoogle Scholar
  70. Wehr JD, Sheath RG (eds) (2003) Freshwater algae of North America: ecology and classification. Academic, LondonGoogle Scholar
  71. Werner D (ed) (1977) The biology of diatoms. Blackwell, Los AngelesGoogle Scholar
  72. Wiktor J, Tatarek A, Węsławski JM, Kotwicki L, Poulin M (2016) Colonies of Gyrosigma eximium: a new phenomenon in Arctic tidal flats. Oceanologia 58:336–340CrossRefGoogle Scholar
  73. Yang Z-K, Niu Y-F, Ma Y-H, Xue J, Zhang M-H, Yang W-D, Liu J-S, Lu S-H, Guan Y, Li H-Y (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67PubMedPubMedCentralCrossRefGoogle Scholar
  74. Zhukova NV, Aizdaicher NA (1995) Fatty acid composition of 15 species of marine microalgae. Phytochemistry 39:351–356CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Algae Culture Collection Center & Laboratory, Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Earth Resources & Sustainability CentreUniversiti Malaysia PahangKuantanMalaysia
  3. 3.Department of BiotechnologyMaejo University-Phrae CampusPhrae 54140Thailand
  4. 4.School of Renewable EnergyMaejo UniversityChiang Mai 50290Thailand
  5. 5.School of EngineeringMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations