Microalgal biohydrogen photoproduction: scaling up challenges and the ways forward

  • Fatemeh KhosravitabarEmail author


Hydrogen as the cleanest source of energy is a promising alternative to conventional fossil fuels. Among different technologies for hydrogen production, photosynthetic microorganism, such as microalgae, has a great potential to produce hydrogen, by using only water and sunlight, as both clean and cheap sources. This article reviews the advances and the shortcoming of microalgal biohydrogen photoproduction, focusing on the production process, biological barriers of high-yield H2 production, scale up challenges, and also various techniques and strategies used to cope with these bottlenecks.


H2 production Microalgae Hydrogenase Sulfur deprivation Chlamydomonas reinhardtii 



  1. Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156CrossRefPubMedGoogle Scholar
  2. Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Nishihara H, Mimuro M, Carpentier R, Nagata T (2010a) Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic means. In: Mukherjee A (ed) Biomimetics learning from nature. InTech, Croatia, pp 49–77Google Scholar
  3. Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010b) Photosynthetic hydrogen production. J Photochem Photobiol C 11:101–113CrossRefGoogle Scholar
  4. Antal T, Krendeleva T, Laurinavichene T, Makarova V, Ghirardi M, Rubin A, Tsygankov A, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta-Bioenergetics 1607:153–160CrossRefGoogle Scholar
  5. Antal T, Mattila H, Hakala-Yatkin M, Tyystjärvi T, Tyystjärvi E (2010) Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris. Planta 232:887–898CrossRefPubMedGoogle Scholar
  6. Antal TK, Matorin DN, Kukarskikh GP, Lambreva MD, Tyystjärvi E, Krendeleva TE, Tsygankov AA, Rubin AB (2014) Pathways of hydrogen photoproduction by immobilized Chlamydomonas reinhardtii cells deprived of sulfur. Int J Hydrog Energy 39:18194–18203CrossRefGoogle Scholar
  7. Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrogen Energ 37:8834–8839CrossRefGoogle Scholar
  8. Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bayro-Kaiser V, Nelson N (2017) Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy. Photosynth Res 133:49–62CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142:70–77CrossRefPubMedGoogle Scholar
  11. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300CrossRefGoogle Scholar
  12. Chen H-C, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296CrossRefPubMedGoogle Scholar
  13. Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energ 137:282–291CrossRefGoogle Scholar
  14. Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cohen J, Kim K, King P, Seibert M, Schulten K (2005a) Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects. Structure 13:1321–1329CrossRefPubMedGoogle Scholar
  16. Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005b) Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem Soc Trans 33:80–82CrossRefPubMedPubMedCentralGoogle Scholar
  17. del Rio-Chanona EA, Wagner JL, Ali H, Fiorelli F, Zhang D, Hellgardt K (2019) Deep learning-based surrogate modeling and optimization for microalgal biofuel production and photobioreactor design. AICHE J 65:915–923Google Scholar
  18. Dincer I (2012) Green methods for hydrogen production. Int J Hydrogen Energ 37:1954–1971CrossRefGoogle Scholar
  19. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33CrossRefPubMedGoogle Scholar
  20. Eilenberg H, Weiner I, Ben-Zvi O, Pundak C, Marmari A, Liran O, Wecker MS, Milrad Y, Yacoby I (2016) The dual effect of a ferredoxin-hydrogenase fusion protein in vivo: successful divergence of the photosynthetic electron flux towards hydrogen production and elevated oxygen tolerance. Biotechnol Biofuels 9:182–192CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elakkiya M, Prabhakaran D, Thirumarimurugan M (2016) Methods of cell immobilization and its applications. Methods 5:211–216Google Scholar
  22. Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413CrossRefPubMedGoogle Scholar
  23. Eroglu E, Smith SM, Raston CL (2015) Application of various immobilization techniques for algal bioprocesses. In: Moheimani NR, McHenry MP, Boer K, Bahri PA (eds) Biomass and biofuels from microalgae. Springer, Dordrecht, pp 19–44CrossRefGoogle Scholar
  24. Fernández-Sevilla J, Fernández FA, Grima EM (2018) Development of photobioreactors for H2 production from algae. In: Rhodesl, Sage E, Trotta M, Jori G (eds) Microalgal hydrogen production. The Royal Society of Chemistry, Croydon, pp 385–418Google Scholar
  25. Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132CrossRefPubMedGoogle Scholar
  26. Frustaci JM, O'Brian MR (1992) Characterization of a Bradyrhizobium japonicum ferrochelatase mutant and isolation of the hemH gene. J Bacteriol 174:4223–4229CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefPubMedPubMedCentralGoogle Scholar
  28. Geier SC, Huyer S, Praebst K, Husmann M, Walter C, Buchholz R (2012) Outdoor cultivation of Chlamydomonas reinhardtii for photobiological hydrogen production. J Appl Phycol 24:319–327CrossRefGoogle Scholar
  29. Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61CrossRefPubMedGoogle Scholar
  30. Gil MV, Fermoso J, Pevida C, Chen D, Rubiera F (2016) Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil. App Catal B 184:64–76CrossRefGoogle Scholar
  31. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784CrossRefPubMedPubMedCentralGoogle Scholar
  32. Heinekey DM (2009) Hydrogenase enzymes: recent structural studies and active site models. J Organomet Chem 694:2671–2680CrossRefGoogle Scholar
  33. Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407CrossRefPubMedGoogle Scholar
  34. Hinterholz C, Schuelter A, Módenes A, Trigueros D, Borba C, Espinoza-Quiñones F, Kroumov A (2017) Microalgae flat plate-photobioreactor (fp-pbr) system development: Computational tools to improve experimental results. Acta Microbiol Bulg 33:119–150Google Scholar
  35. Hippler M, Redding K, Rochaix J-D (1998) Chlamydomonas genetics, a tool for the study of bioenergetic pathways. Biochim Biophys Acta-Bioenergetics 1367:1–62CrossRefGoogle Scholar
  36. Huner NP, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, ParsonWW (eds) Light-harvesting antennas in photosynthesis. Springer, Dordrecht, pp 401–421Google Scholar
  37. Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa S-I, Houille-Vernes L, Petroutsos D, Rappaport F, Grossman AR (2014) PGR5-mediated cyclic electron flow under ATP-or redox-limited conditions: a study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in Chlamydomonas reinhardtii. Plant Physiol. 113.233-593Google Scholar
  38. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40:1321–1354CrossRefGoogle Scholar
  39. Khosravitabar F, Hippler M (2019) A new approach for improving microalgal biohydrogen photoproduction based on safe & fast oxygen consumption. Int J Hydrogen Energ 44:17835–17844CrossRefGoogle Scholar
  40. Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431CrossRefPubMedGoogle Scholar
  41. Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A (2012) Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 160:2251–2260CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kołwzan K, Narewski M (2012) Alternative fuels for marine applications. Latv J Chem 51:398–406CrossRefGoogle Scholar
  43. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58CrossRefPubMedGoogle Scholar
  44. Kosourov S, Murukesan G, Seibert M, Allahverdiyeva Y (2017) Evaluation of light energy to H2 energy conversion efficiency in thin films of cyanobacteria and green alga under photoautotrophic conditions. Algal Res 28:253–263CrossRefGoogle Scholar
  45. Kosourov SN, He M, Allahverdiyeva Y, Seibert M (2018) Immobilization of microalgae as a tool for efficient light utilization in H2 production and other biotechnology applications. In: Sage E, Trotta M, Jori G (eds) Rhodesl. Microalgal hydrogen production, The Royal Society of Chemistry, Croydon, pp 355–384Google Scholar
  46. Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotech 21:238–243CrossRefPubMedGoogle Scholar
  47. Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005a) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177CrossRefPubMedGoogle Scholar
  48. Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005b) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4:957–970CrossRefPubMedGoogle Scholar
  49. Lin H-D, Liu B-H, Kuo T-T, Tsai H-C, Feng T-Y, Huang C-C, Chien L-F (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. Bioresource technol 143:154–162CrossRefGoogle Scholar
  50. Lindblad P (2018) Hydrogen production using novel photosynthetic cell factories. Cyanobacterial hydrogen production: design of efficient organisms. In: Rhodes L, Sage E, Trotta M, Jori G (eds) Microalgal hydrogen production. Achievements and Perspectives. Royal Society of Chemistry, Croydon, pp 323–334CrossRefGoogle Scholar
  51. Márquez-Reyes LA, del Pilar S-SM, Valdez-Vazquez I (2015) Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. Int J Hydrog Energy 40:7291–7300CrossRefGoogle Scholar
  52. Maswanna T, Phunpruch S, Lindblad P, Maneeruttanarungroj C (2018) Enhanced hydrogen production by optimization of immobilized cells of the green alga Tetraspora sp. CU2551 grown under anaerobic condition. Biomass Bioenergy 111:88–95CrossRefGoogle Scholar
  53. Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energ 34:7404–7416CrossRefGoogle Scholar
  54. McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotech 21:244–251CrossRefPubMedGoogle Scholar
  55. Melis A (2005) Bioengineering of green algae to enhance photosynthesis and hydrogen production. In: Collings AF, Critchley C (eds) Artificial photosynthesis: from basic biology to industrial application. Wiley-VCH, Weinheim, pp 229–240Google Scholar
  56. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  57. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748CrossRefPubMedPubMedCentralGoogle Scholar
  58. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefPubMedPubMedCentralGoogle Scholar
  59. Melis A, Seibert M, Ghirardi ML (2007) Hydrogen fuel production by transgenic microalgae. Adv Exp Med Biol 616:110–121CrossRefPubMedGoogle Scholar
  60. Meuser J, D'Adamo S, Jinkerson R, Mus F, Yang W, Ghirardi M, Seibert M, Grossman A, Posewitz M (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H2 production. Biochem Biophys Res Comn 417:704–709CrossRefGoogle Scholar
  61. Midilli A, Ay M, Dincer I, Rosen M (2005) On hydrogen and hydrogen energy strategies: I: current status and needs Renew Sust Energy Rev 9:255–271Google Scholar
  62. Minagawa J, Crofts AR (1994) A robust protocol for site-directed mutagenesis of the D1 protein in Chlamydomonas reinhardtii: a PCR-splicedpsbA gene in a plasmid conferring spectinomycin resistance was introduced into apsbA deletion strain. Photosynth Res 42:121–131CrossRefPubMedGoogle Scholar
  63. Mitra M, Melis A (2010) Genetic and biochemical analysis of the TLA1 gene in Chlamydomonas reinhardtii. Planta 231:729–740CrossRefPubMedGoogle Scholar
  64. Montet Y, Amara P, Volbeda A, Vernede X, Hatchikian EC, Field MJ, Frey M, Fontecilla-Camps JC (1997) Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nat Struct Biol 4:523–526CrossRefPubMedGoogle Scholar
  65. Moreno-Garrido I (2013) Microalgal immobilization methods. In: Guisan JM (ed) Immobilization of enzymes and cells. Springer, Dordrecht, pp 327–347CrossRefGoogle Scholar
  66. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010a) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA ΔEFG. Nature 465:248–251CrossRefPubMedGoogle Scholar
  67. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010b) Stepwise [lsqb] FeFe [rsqb]-hydrogenase H-cluster assembly revealed in the structure of HydA [Dgr] EFG. Nature 465:248–251CrossRefPubMedGoogle Scholar
  68. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19:1038–1052CrossRefPubMedGoogle Scholar
  69. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371CrossRefPubMedGoogle Scholar
  70. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814CrossRefPubMedGoogle Scholar
  71. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefPubMedGoogle Scholar
  72. Nagy V, Podmaniczki A, Vidal-Meireles A, Tengölics R, Kovács L, Rákhely G, Scoma A, Tóth SZ (2018) Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle. Biotechnol Biofuels 11:69CrossRefPubMedPubMedCentralGoogle Scholar
  73. Noth J, Krawietz D, Hemschemeier A, Happe T (2013) Pyruvate: ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 288:4368–4377CrossRefPubMedGoogle Scholar
  74. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8:e61375CrossRefPubMedPubMedCentralGoogle Scholar
  75. Oh S, Logan BE (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39:4673–4682CrossRefPubMedGoogle Scholar
  76. Papazi A, Gjindali A-I, Kastanaki E, Assimakopoulos K, Stamatakis K, Kotzabasis K (2014) Potassium deficiency, a “smart” cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. Int J Hydrogen Energ 39:19452–19464CrossRefGoogle Scholar
  77. Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A (2013) Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 288:35192–35209CrossRefPubMedPubMedCentralGoogle Scholar
  78. Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M (2009) PGRL1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in Chlamydomonas reinhardtii. J Biol Chem 284:32770–32781CrossRefPubMedPubMedCentralGoogle Scholar
  79. Philipps G, Krawietz D, Hemschemeier A, Happe T (2011) A pyruvate formate lyase-deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen production in green algae. Plant J 66:330–340CrossRefPubMedGoogle Scholar
  80. Pinto T, Malcata F, Arrabaça J, Silva J, Spreitzer R, Esquível M (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biot 97:5635–5643CrossRefGoogle Scholar
  81. Polle JE, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217:49–59PubMedGoogle Scholar
  82. Reifschneider-Wegner K, Kanygin A, Redding KE (2014) Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrogen Energ 39:3657–3665CrossRefGoogle Scholar
  83. Rühle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains BMC. Plant Biol 8:107Google Scholar
  84. Sáenz ME, Bišová K, Touloupakis E, Faraloni C, Di Marzio WD, Torzillo G (2015) Evidences of oxidative stress during hydrogen photoproduction in sulfur-deprived cultures of Chlamydomonas reinhardtii. Int J Hydrogen Energ 40:10410–10417CrossRefGoogle Scholar
  85. Sakurai H, Masukawa H, Dawar S, Yoshino F (2004) Photobiological hydrogen production by cyanobacteria utilizing nitrogenase systems-present status and future development. Biohydrogen III 4:83–92CrossRefGoogle Scholar
  86. Salama E-S, Hwang J-H, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RA, Kim K-H, Yang I-S, Govindwar SP, Kim S (2018) Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: a review. Bioresour Technol 258:365–375CrossRefPubMedGoogle Scholar
  87. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43CrossRefGoogle Scholar
  88. Schütz K, Happe T, Troshina O, Lindblad P, LeitŃo E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218:350–359CrossRefPubMedGoogle Scholar
  89. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619CrossRefPubMedGoogle Scholar
  90. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69CrossRefGoogle Scholar
  91. Skjånes K, Andersen U, Heidorn T, Borgvang SA (2016) Design and construction of a photobioreactor for hydrogen production, including status in the field. J Appl Phycol 28:2205–2223CrossRefPubMedPubMedCentralGoogle Scholar
  92. Steinbeck J, Nikolova D, Weingarten R, Johnson X, Richaud P, Peltier G, Hermann M, Magneschi L, Hippler M (2015) Deletion of Proton Gradient Regulation 5 (PGR5) and PGR5-Like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation. Front Plant Sci 6:892–903CrossRefPubMedPubMedCentralGoogle Scholar
  93. Stripp S, Sanganas O, Happe T, Haumann M (2009) The structure of the active site H-cluster of [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii studied by X-ray absorption spectroscopy. Biochemistry 48:5042–5049CrossRefPubMedGoogle Scholar
  94. Surzycki R, Cournac L, Peltier G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci 104:17548–17553CrossRefPubMedGoogle Scholar
  95. Szwaja S, Grab-Rogalinski K (2009) Hydrogen combustion in a compression ignition diesel engine. Int J Hydrogen Energ 34:4413–4421CrossRefGoogle Scholar
  96. Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tetali SD, Mitra M, Melis A (2007) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813–829CrossRefPubMedGoogle Scholar
  98. Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano J-M, Beyly A (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630CrossRefPubMedPubMedCentralGoogle Scholar
  99. Torzillo G, Seibert M (2018) Microalgal hydrogen production: achievements and perspectives. In: Rhodesl, Sage E, Trotta M, Jori G (eds) Comprehensive series in photochemical and photobiological science. Royal Society of Chemistry, Croydon, pp 5–26Google Scholar
  100. Tóth SZ, Yacoby I (2019) Paradigm shift in algal H2 production: bypassing competitive processes. Trends Biotechnol
  101. Türker L, Gümüs S, Tapan A (2008) Biohydrogen production: molecular aspects. J Sci Ind Res 6:944–1016Google Scholar
  102. Turner J, Sverdrup G, Mann MK, Maness PC, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energ Res 32:379–407CrossRefGoogle Scholar
  103. van Lis R, Baffert C, Couté Y, Nitschke W, Atteia A (2013) Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate: ferredoxin oxidoreductase that functions with FDX1. Plant Physiol161:57–71Google Scholar
  104. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272CrossRefPubMedGoogle Scholar
  105. Volgusheva A, Styring S, Mamedov F (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc Nat Acad Sci 110:7223–7228CrossRefPubMedGoogle Scholar
  106. Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F (2015) Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv 5:5633–5637CrossRefGoogle Scholar
  107. Wang Y, Yu J, Wang P, Deng S, Chang J, Ran Z (2018) Response of energy microalgae Chlamydomonas reinhardtii to nitrogen and phosphorus stress. Environ Sci Pollut Res 25:5762–5770CrossRefGoogle Scholar
  108. Winkler M, Kuhlgert S, Hippler M, Happe T (2009) Characterization of the key step for light-driven hydrogen evolution in green algae. J Biol Chem 284:36620–36627CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wirth R, Lakatos G, Maróti G, Bagi Z, Minárovics J, Nagy K, Kondorosi É, Rákhely G, Kovács KL (2015) Exploitation of algal-bacterial associations in a two-stage biohydrogen and biogas generation process. Biotechnol Biofuels 8:59–73CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, Kruse O (2009) Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc Nat Acad Sci 106:13290–13295CrossRefPubMedGoogle Scholar
  111. Wu S, Huang R, Xu L, Yan G, Wang Q (2010) Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. J Biotechnol 146:120–125CrossRefPubMedGoogle Scholar
  112. Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102:2610–2616CrossRefPubMedGoogle Scholar
  113. Wutthithien P, Lindblad P, Incharoensakdi A (2019) Improvement of photobiological hydrogen production by suspended and immobilized cells of the N2-fixing cyanobacterium Fischerella muscicola TISTR 8215. J Appl Phycol.
  114. Xu F-Q, Ma W-M, Zhu X-G (2011) Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production. Int J Hydrog Energy 36:10648–10654CrossRefGoogle Scholar
  115. Xu L, Wang Q, Wu S, Li D (2014) Improvement of hydrogen yield of lba-transgenic Chlamydomonas reinhardtii caused by increasing respiration and impairing photosynthesis. Int J Hydrog Energy 39:13347–13352CrossRefGoogle Scholar
  116. Xu L, Li D, Wang Q, Wu S (2016) Improved hydrogen production and biomass through the co-cultivation of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Int J Hydrog Energy 41:9276–9283CrossRefGoogle Scholar
  117. Xu L, Cheng X, Wang Q (2017) Effect of co-cultivation of Chlamydomonas reinhardtii with Azotobacter chroococcum on hydrogen production. Int J Hydrogen Energ 42:22713–22719CrossRefGoogle Scholar
  118. Yan XL, Hino R (2016) Nuclear hydrogen production handbook. CRC Press, New YorkCrossRefGoogle Scholar
  119. Zeng J, Xiao R, Zhang H, Wang Y, Zeng D, Ma Z (2017) Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production. Fuel Process Technol 168:116–122CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Institute of Plant Biology and BiotechnologyUniversity of MünsterMünsterGermany

Personalised recommendations