Advertisement

Spent yeast as an efficient medium supplement for fucoxanthin and eicosapentaenoic acid (EPA) production by Phaeodactylum tricornutum

  • Xue Yuan
  • Limin Liang
  • Kui Liu
  • Lijuan Xie
  • Luqiang Huang
  • Wenjin He
  • Youqiang Chen
  • Ting XueEmail author
Article

Abstract

Fucoxanthin and eicosapentaenoic acid (EPA) are high-value compounds that can be found in the marine diatom Phaeodactylum tricornutum. Yet, the growth rate of this microalga is relatively low under photoautotrophic conditions. The purpose of this study was to evaluate the feasibility of using spent yeast, the second-major by-product of the brewing industry, as a useful substrate for P. tricornutum cultivation. Different pretreatments, concentrations of spent yeast, and initial cell densities of P. tricornutum were investigated. After 12 days of cultivation in f/2 medium, P. tricornutum supplemented with 1.33 g L−1 preautoclaved spent yeast yielded 3.28 times more fucoxanthin (5.97 mg L−1) and 3.55 times more EPA (16.82 mg L−1) than P. tricornutum grown without the yeast (fucoxanthin 1.82 mg L−1, EPA 4.64 mg L−1). Nutrient analysis showed that the nitrogen and phosphorus released by the spent yeast were consumed over time. Overall, spent yeast effectively promoted the fucoxanthin and EPA yields of P. tricornutum.

Keywords

Spent yeast Phaeodactylum tricornutum Fucoxanthin EPA Nutrients analysis 

Notes

Funding information

This study was funded by the Natural Science Foundation of Fujian Province (Grant No. 2017J01622) and the Sugar Crop Research System (Grant No. CARS-170501).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Andersen RA, Morton SL, Sexton JP (1997) Provasoli-Guillard National Center for Culture of Marine Phytoplankton 1997 list of strains. J Phycol 33:1–75Google Scholar
  2. Anwaruzzaman SS, Usuda H, Yokota A (1995) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activation by inorganic phosphate through stimulating the binding of the activator CO2 to the activation sites. Plant Cell Physiol 36:425–433Google Scholar
  3. Apt KE, Grossman AR, Kroth-Pancic PG (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579Google Scholar
  4. Avula B, Wang Y-H, Khan IA (2015) Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS. J AOAC Int 98:321–329CrossRefGoogle Scholar
  5. Botebol H, Sutak R, Scheiber IF, Blaiseau P-L, Bouget F-Y, Camadro J-M, Lesuisse E (2014) Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. BioMetals 27:75–88CrossRefGoogle Scholar
  6. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  7. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C 146:60–78CrossRefGoogle Scholar
  8. Carvalho AP, Malcata FX (2005) Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388CrossRefGoogle Scholar
  9. Cerón-García MC, Fernández-Sevilla JM, Sánchez-Mirón A, García-Camacho F, Contreras-Gómez A, Molina-Grima E (2013) Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour Technol 147:569–576CrossRefGoogle Scholar
  10. Ceron-Garcia MC, Sánchez Mirón A, Fernández Sevilla JM, Molina Grima E, Garcia Camacho F (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305CrossRefGoogle Scholar
  11. Chen K-Q, Li J, Ma J-F, Jiang M, Wei P, Liu Z-M, Ying H-J (2011) Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresour Technol 102:1704–1708CrossRefGoogle Scholar
  12. Cohen Z (1994) Production potential of eicosapentaenoic acid by Monodus subterraneus. J Am Oil Chem Soc 71:941–945CrossRefGoogle Scholar
  13. Dyhrman ST, Ruttenberg KC (2006) Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus remineralization. Limnol Oceanogr 51:1381–1390CrossRefGoogle Scholar
  14. Fábregas J, Morales ED, Lamela T, Cabezas B, Otero A (1997) Mixotrophic productivity of the marine diatom Phaeodactylum tricornutum cultured with soluble fractions of rye, wheat and potato. World J Microbiol Biotechnol 13:349–351Google Scholar
  15. Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21:77–84CrossRefGoogle Scholar
  16. Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14:463–471CrossRefGoogle Scholar
  17. Galasso C, Corinaldesi C, Sansone C (2017) Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants 6:96CrossRefGoogle Scholar
  18. Geider RJ, La Roche J, Greene RM, Olaizola M (1993) Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol 29:755–766CrossRefGoogle Scholar
  19. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals: proceedings — 1st conference on culture of marine invertebrate animals greenport. Springer US, Boston, pp 29–60CrossRefGoogle Scholar
  20. Gupta A, Wilkens S, Adcock JL, Puri M, Barrow CJ (2013) Pollen baiting facilitates the isolation of marine Thraustochytrids with potential in omega-3 and biodiesel production. J Ind Microbiol Biotechnol 40:1231–1240CrossRefGoogle Scholar
  21. Hayward J (1968) Studies on the growth of Phaeodaetylum tricornutum. Physiol Plant 21:100–108CrossRefGoogle Scholar
  22. Karas BJ, Diner RE, Lefebvre SC, Mcquaid J, Phillips AP, Noddings CM, Brunson JK, Valas RE, Deerinck TJ, Jablanovic J (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:6925CrossRefGoogle Scholar
  23. Koh HY, Lee JH, Han SJ, Park H, Lee SG (2015) Effect of the antifreeze protein from the arctic yeast Leucosporidium sp. AY30 on cryopreservation of the marine diatom Phaeodactylum tricornutum. Appl Biochem Biotechnol 175:677–686CrossRefGoogle Scholar
  24. Komoda Y, Isogai Y, Satoh K (1983) Isolation from humus and identification of two growth promoters, adenosine and 2′-deoxyadenosine, effective in culturing the diatom Phaeodactylum tricornutum. Chem Pharm Bull 31:3771–3774CrossRefGoogle Scholar
  25. Kustka A, Carpenter EJ, Sañudo-Wilhelmy SA (2002) Iron and marine nitrogen fixation: progress and future directions. Res Microbiol 153:255–262CrossRefGoogle Scholar
  26. Lin H-Y, Shih C-Y, Liu H-C, Chang J, Chen Y-L, Chen Y-R, Lin H-T, Chang Y-Y, Hsu C-H, Lin H-J (2013) Identification and characterization of an extracellular alkaline phosphatase in the marine diatom Phaeodactylum tricornutum. Mar Biotechnol 15:425–436CrossRefGoogle Scholar
  27. McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48CrossRefGoogle Scholar
  28. Milligan AJ, Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 36:78–86CrossRefGoogle Scholar
  29. Mu K, Wang S, Kitts D (2016) Evidence to indicate that Maillard reaction products can provide selective antimicrobial activity. Integr Food Nutr Metab 3:330–335CrossRefGoogle Scholar
  30. Myers J (1953) Growth characteristics of algae in relation to the problems of mass culture. In: Algal culture from laboratory to pilot plant, vol 600. Carnegie Institute of Washington, pp 37–50Google Scholar
  31. Nur MMA, Muizelaar W, Boelen P, Buma AGJ (2019) Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. J Appl Phycol 31:111–122CrossRefGoogle Scholar
  32. O’Brien J, Morrissey PA, Ames JM (1989) Nutritional and toxicological aspects of the Maillard browning reaction in foods. Crit Rev Food Sci Nutr 28:211–248CrossRefGoogle Scholar
  33. Ou L, Cai Y, Jin W, Wang Z, Lu S (2018) Understanding the nitrogen uptake and assimilation of the Chinese strain of Aureococcus anophagefferens (Pelagophyceae). Algal Res 34:182–190CrossRefGoogle Scholar
  34. Patel A, Matsakas L, Hrůzová K, Rova U, Christakopoulos P (2019) Biosynthesis of nutraceutical fatty acids by the oleaginous marine microalgae Phaeodactylum tricornutum utilizing hydrolysates from organosolv-pretreated birch and spruce biomass. Mar Drugs 17:119CrossRefGoogle Scholar
  35. Perezgarcia O, Escalante FME, Debashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefGoogle Scholar
  36. Rakowska R, Sadowska A, Dybkowska E, F Ś (2017) Spent yeast as natural source of functional food additives. Rocz Panstw Zakl Hig 68 (2):115–121Google Scholar
  37. Seo S, Jeon H, Chang KS, Jin E (2018) Enhanced biomass production by Phaeodactylum tricornutum overexpressing phosphoenolpyruvate carboxylase. Algal Res 31:489–496CrossRefGoogle Scholar
  38. Silva Benavides AM, Torzillo G, Kopecký J, Masojídek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy 54:115–122CrossRefGoogle Scholar
  39. Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103CrossRefGoogle Scholar
  40. Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, Jazey T, Lee K, Klassen Z, Desgagné-Penix I, Karas BJ, Edgell DR (2018) An expanded plasmid-based genetic toolbox enables cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum. ACS Synth Biol 7:328–338CrossRefGoogle Scholar
  41. Stukenberg D, Zauner S, Dell’Aquila G, Maier UG (2018) Optimizing CRISPR/Cas9 for the diatom Phaeodactylum tricornutum. Front Plant Sci 9:740Google Scholar
  42. Tanguler H, Erten H (2008) Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature. Food Bioprod Process 86:317–321CrossRefGoogle Scholar
  43. Timm U, Klinck JM, Okubo A (1991) Self- and mutual shading and competition effect on competing algal distributions: biological implications of the model. Ecol Model 59:11–36CrossRefGoogle Scholar
  44. Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients 11:89CrossRefGoogle Scholar
  45. Veronesiv D, D’Imporzano G, Salati S, Adani F (2017) Pre-treated digestate as culture media for producing algal biomass. Ecol Eng 105:335–340CrossRefGoogle Scholar
  46. Weyman PD, Beeri K, Lefebvre SC, Rivera J, Mccarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2015) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13:460–470CrossRefGoogle Scholar
  47. Wheeler PA, North BB, Stephens GC (1974) Amino acid uptake by marine phytoplankters. Limnol Oceanogr 19:249–259CrossRefGoogle Scholar
  48. Wu H, Li T, Wang G, Dai S, He H, Xiang W (2016) A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins. Chin J Oceanol Limnol 34:391–398CrossRefGoogle Scholar
  49. Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl Environ Microbiol 57:419–425Google Scholar
  50. Zamalloa C, De Vrieze J, Boon N, Verstraete W (2012) Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Appl Microbiol Biotechnol 93:859–869CrossRefGoogle Scholar
  51. Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386CrossRefGoogle Scholar
  52. Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefGoogle Scholar
  53. Zhang W, Wang F, Gao B, Huang L, Zhang C (2018) An integrated biorefinery process: stepwise extraction of fucoxanthin, eicosapentaenoic acid and chrysolaminarin from the same Phaeodactylum tricornutum biomass. Algal Res 32:193–200CrossRefGoogle Scholar
  54. Zhao P, Gu W, Huang A, Wu S, Liu C, Huan L, Gao S, Xie X, Wang G (2018) Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. J Phycol 54:34–43CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xue Yuan
    • 1
    • 2
  • Limin Liang
    • 1
    • 2
  • Kui Liu
    • 1
  • Lijuan Xie
    • 2
  • Luqiang Huang
    • 1
    • 2
  • Wenjin He
    • 1
  • Youqiang Chen
    • 1
    • 2
  • Ting Xue
    • 1
    • 2
    Email author
  1. 1.The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life SciencesFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of OceanographyFujian Normal UniversityFuzhouPeople’s Republic of China

Personalised recommendations