Assessing the effect of high doses of ampicillin on five marine and freshwater phytoplankton species: a biodegradation perspective

  • Beatriz Baselga-Cervera
  • Manuel Cordoba-Diaz
  • Camino García-BalboaEmail author
  • Eduardo Costas
  • Victoria López-Rodas
  • Damian Cordoba-Diaz


Previous studies have identified several effects of antibiotic exposure at doses typically found in natural water (~μg). However, high doses of antibiotics can be found near wastewater treatment plants, and antibiotic concentrations in natural watercourses are likely to increase due to continuous current inputs. Therefore, the systematic evaluation of the susceptibility of phytoplankton species to antibiotics in water should be conducted for an improved risk assessment and the development of biotechnology for antibiotic residue management. The aim of the present study was, therefore, to investigate the response to high concentrations of ampicillin in several microalgae and cyanobacteria species with consideration of potential biodegradation applications for industrial and sanitary wastewaters. Pure laboratory cultures of freshwater (Dictyosphaerium chlorelloides, Chlamydomonas reinhardtii and Microcystis aeruginosa) and marine (Emiliania huxleyi and Prochloron sp.) species were exposed to several doses of ampicillin (6–14 mg L−1). Cell growth and other functions were followed in each species for up to a month. The results revealed that the species susceptibility to ampicillin varied greatly. No effect was observed in the chlorophytes, M. aeruginosa presented high inhibition and microcystin stimulation, upregulation/enhancement occurred in E. huxleyi, and photochemical stress occurred in the marine cyanobacterium Prochloron sp. Moreover, we observed that the ampicillin effect varied over time in susceptible species. Despite the variability of response, all the species presented high rates of antibiotic degradation. From these bioassays, it can be inferred that the effect of ampicillin cannot be generalized to microalgae groups. Additionally, the potential of microalgae to mitigate antibiotic impacts by degradation is a novel aspect yet to be investigated.


Microalgae Cyanobacteria Ampicillin Biodegradation Antibiotics Species sensitivity 



Thanks are given to Lara de Miguel and Eva Salgado for their excellent technical support. This work was supported by the Dirección General de Salud Pública, Comunidad de Madrid (Art. 83 UCM/2018).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10811_2019_1823_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 32 kb)
10811_2019_1823_MOESM2_ESM.docx (1.5 mb)
ESM 2 (DOCX 1566 kb)


  1. Acred P, Brown DM, Turner DH, Wilson MJ (1962) Pharmacology and chemotherapy of ampicillin—a new broad-spectrum penicillin. Br J Pharmacol Chemother 18:356–369CrossRefGoogle Scholar
  2. Ali AM, Rønning HT, Alarif W, Kallenborn R, Al-Lihaibi SS (2017) Occurrence of pharmaceuticals and personal care products in effluent-dominated Saudi Arabian coastal waters of the Red Sea. Chemosphere 175:505–513CrossRefGoogle Scholar
  3. Ando T, Nagase H, Eguchi K, Hirooka T, Nakamura T, Miyamoto K, Hirata K (2007) A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ Toxicol Chem 26:601–606CrossRefGoogle Scholar
  4. Arribas A, Herrero-Payo J (1979) Geochemical distribution of uranium in soils and vegetation of the “Fe 3” mine, Saelices, Salamanca, Spain. Phys Chem Earth 11:727–738CrossRefGoogle Scholar
  5. Baquero F, Martínez J-L, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265CrossRefGoogle Scholar
  6. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  7. Ben Chekroun K, Sanchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Public Environ Health 1:19–32Google Scholar
  8. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596CrossRefGoogle Scholar
  9. Campa-Córdova AI, Luna-González A, Ascencio F, Cortés-Jacinto E, Cáceres-Martínez CJ (2006) Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 260:145–150CrossRefGoogle Scholar
  10. Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44CrossRefGoogle Scholar
  11. Costanzo SD, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223CrossRefGoogle Scholar
  12. de Godos I, Muñoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229–230:446–449CrossRefGoogle Scholar
  13. De Magalhaes J, Borschiver S (2012) Amoxicillin and ampicillin-import trends and increasing use in Brazil. Chim Oggi-Chemistry Today 30:91–93Google Scholar
  14. Dias E, Oliveira M, Jones-Dias D, Vasconcelos V, Ferreira E, Manageiro V, Caniça M (2015) Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front Microbiol 6:799CrossRefGoogle Scholar
  15. Dietrich D, Hoeger S (2005) Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): a reasonable or misguided approach? Toxicol Appl Pharmacol 203:273–289CrossRefGoogle Scholar
  16. Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941CrossRefGoogle Scholar
  17. Dolliver H, Gupta S, Noll S (2008) Antibiotic degradation during manure composting. J Environ Qual 37:1245CrossRefGoogle Scholar
  18. Downing TG, Meyer C, Gehringer MM, van de Venter M (2005) Microcystin content of Microcystis aeruginosa is modulated by nitrogen uptake rate relative to specific growth rate or carbon fixation rate. Environ Toxicol 20:257–262CrossRefGoogle Scholar
  19. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, Miyamoto K, Yoshimura H (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57:1733–1738CrossRefGoogle Scholar
  20. Falkowski PG, Raven JA (2013) Aquatic photosynthesis: (Second Edition). Princeton University Press, PrincetonCrossRefGoogle Scholar
  21. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275CrossRefGoogle Scholar
  22. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  23. Forest A, Tremblay J, Gratton Y, Martin J (2011) Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr 91:410–436CrossRefGoogle Scholar
  24. González-Plaza JJ, Šimatović A, Milaković M, Bielen A, Wichmann F, Udiković-Kolić N (2018) Functional repertoire of antibiotic resistance genes in antibiotic manufacturing effluents and receiving freshwater sediments. Front Microbiol 8:2675CrossRefGoogle Scholar
  25. González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F (2013) Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment. Water Res 47:2050–2064CrossRefGoogle Scholar
  26. Graham LE, Graham JM, Wilcox LW (2009) Algae, 2nd edn. Benjamin Cummings, NYGoogle Scholar
  27. Grenni P, Ancona V, Barra Caracciolo A (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39CrossRefGoogle Scholar
  28. Halling-Sorensen B (2000) Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J Antimicrob Chemother 46:53–58CrossRefGoogle Scholar
  29. Harke MJ, Gobler CJ (2013) Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS One 8:e69834CrossRefGoogle Scholar
  30. Holten Lützhøft HC, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1–6CrossRefGoogle Scholar
  31. Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198CrossRefGoogle Scholar
  32. Injac R, Kočevar N, Štrukelj B (2009) Optimized method for determination of amoxicillin, ampicillin, sulfamethoxazole, and sulfacetamide in animal feed by micellar electrokinetic capillary chromatography and comparison with high-performance liquid chromatography. Croat Chem Acta 82:685–694Google Scholar
  33. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98CrossRefGoogle Scholar
  34. Itoh S, Sugiura K (2004) Fluorescence of photosystem I. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Springer Netherlands, Dordrecht, pp 231–250Google Scholar
  35. Jun Y, Zhengyu L (1997) Advances in biological treatmemt processes of antibiotic production wastewater. J Environ Sci 18:83–85Google Scholar
  36. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518CrossRefGoogle Scholar
  37. Kemper N, Färber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric Water Manag 95:1288–1292CrossRefGoogle Scholar
  38. Knapp CW, Dolfing J, Ehlert PAI, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587CrossRefGoogle Scholar
  39. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  40. Kulkarni P, Olson ND, Raspanti GA, Rosenberg Goldstein RE, Gibbs SG, Sapkota A, Sapkota AR (2017) Antibiotic concentrations decrease during wastewater treatment but persist at low levels in reclaimed water. Int J Environ Res Public Health:14Google Scholar
  41. Kümmerer K (2001) Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources - a review. Chemosphere 45:957–969CrossRefGoogle Scholar
  42. Kümmerer K (2009a) Antibiotics in the aquatic environment--a review--part I. Chemosphere 75:417–434CrossRefGoogle Scholar
  43. Kümmerer K (2009b) Antibiotics in the aquatic environment--a review--part II. Chemosphere 75:435–441CrossRefGoogle Scholar
  44. Kushner DJ, Breuil C (1977) Penicillinase (beta-lactamase) formation by blue-green algae. Arch Microbiol 112:219–223CrossRefGoogle Scholar
  45. Kvíderová J, Henley WJ (2005) The effect of ampicillin plus streptomycin on growth and photosynthesis of two halotolerant chlorophyte algae. J Appl Phycol 17:301–307CrossRefGoogle Scholar
  46. Lai H-T, Hou J-H, Su C-I, Chen C-L (2009) Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana, and Tetraselmis chui. Ecotoxicol Environ Saf 72:329–334CrossRefGoogle Scholar
  47. Larsson DGJ, de Pedro C, Paxeus N (2007) Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J Hazard Mater 148:751–755CrossRefGoogle Scholar
  48. Li B, Zhang T (2010) Biodegradation and adsorption of antibiotics in the activated sludge process. Environ Sci Technol 44:3468–3473CrossRefGoogle Scholar
  49. Li D, Yang M, Hu J, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317CrossRefGoogle Scholar
  50. Liu Y, Gao B, Yue Q, Guan Y, Wang Y, Huang L (2012a) Influences of two antibiotic contaminants on the production, release and toxicity of microcystins. Ecotoxicol Environ Saf 77:79–87CrossRefGoogle Scholar
  51. Liu Y, Guan Y, Gao B, Yue Q (2012b) Antioxidant responses and degradation of two antibiotic contaminants in Microcystis aeruginosa. Ecotoxicol Environ Saf 86:23–30CrossRefGoogle Scholar
  52. Liu Y, Zhang J, Gao B, Feng S (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155CrossRefGoogle Scholar
  53. Lopez-Rodas V, Agrelo M, Carrillo E, Ferrero L, Larrauri A, Martin-Otero L, Costas E (2001) Resistance of microalgae to modern water contaminants as the result of rare spontaneous mutations. Eur J Phycol 36:179–190CrossRefGoogle Scholar
  54. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902CrossRefGoogle Scholar
  55. Mitchell SM, Ullman JL, Teel AL, Watts RJ (2014) pH and temperature effects on the hydrolysis of three β-lactam antibiotics: ampicillin, cefalotin and cefoxitin. Sci Total Environ 466–467:547–555CrossRefGoogle Scholar
  56. Nie XP, Liu BY, Yu HJ, Liu WQ, Yang YF (2013) Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ Pollut 172:23–32CrossRefGoogle Scholar
  57. OECD (2011) Freshwater alga and cyanobacteria, growth inhibition test. Test guideline 201. OECD Guidel Test Chem 1–26Google Scholar
  58. Ohad I, Raanan H, Keren N, Tchernov D, Kaplan A (2010) Light-induced changes within photosystem II protects Microcoleus sp. in biological desert sand crusts against excess light. PLoS One 5:e11000CrossRefGoogle Scholar
  59. Orellana G, López-Rodas V, Costas E, Florez DH, Pampin EM (2010) Biosensors based on microalgae for the detection of environmental pollutants. US20100248286A1Google Scholar
  60. Peña-Vázquez E, Maneiro E, Pérez-Conde C, Moreno-Bondi MC, Costas E (2009) Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology. Biosens Bioelectron 24:3538–3543CrossRefGoogle Scholar
  61. Podola B, Nowack ECM, Melkonian M (2004) The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens Bioelectron 19:1253–1260CrossRefGoogle Scholar
  62. Prabaharan D, Sumathi M, Subramanian G (1994) Ability to use ampicillin as a nitrogen source by the marine cyanobacterium Phormidium valderianum BDU 30501. Curr Microbiol 28:315–320CrossRefGoogle Scholar
  63. Quezada MS, Rodríguez C del C, Cordoba-Diaz D (2012) Pharmacist’s role in the studies of the veterinary-medicines-residues depletion. Pharm Policy Law 14:223–228Google Scholar
  64. Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD (2005) Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. J Phycol 41:335–342CrossRefGoogle Scholar
  65. Schiermeier Q (2010) Ocean greenery under warming stress A century of phytoplankton decline suggests that ocean ecosystems are in peril. Nature.
  66. Shen L, Liu Y, Lou XH (2010) Treatment of ampicillin-loaded wastewater by combined adsorption and biodegradation. J Chem Technol Biotechnol 85:814–820CrossRefGoogle Scholar
  67. Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332:159–170CrossRefGoogle Scholar
  68. Smienk HGF, Sevilla Mur E, Peleato ML, Razquin P, Mata L (2007) Validación de un kit para la detección de microcistinas en agua. Aliment Rev Tecnol e Hig los Aliment:104–111Google Scholar
  69. Snyder S, Lue-Hing C, Cotruvo J, Drewes JE, Eaton A, Pleus RC, Schlenk D (2009) Pharmaceuticals in the water environment. NACWA.
  70. Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14:742–750CrossRefGoogle Scholar
  71. van der Grinten E, Pikkemaat MG, van den Brandhof E-J, Stroomberg GJ, Kraak MH (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1–6CrossRefGoogle Scholar
  72. Versporten A (2013) Articles antibiotic use in eastern Europe: a cross-national database study in coordination with the WHO Regional Office for EuropeGoogle Scholar
  73. Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre J, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Lake Grand-Lieu (France). Microb Ecol 35:126–135CrossRefGoogle Scholar
  74. Wang Z, Chen Q, Hu L, Wang M (2018) Combined effects of binary antibiotic mixture on growth, microcystin production, and extracellular release of Microcystis aeruginosa: application of response surface methodology. Environ Sci Pollut Res 25:736–748CrossRefGoogle Scholar
  75. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241CrossRefGoogle Scholar
  76. Watanabe MM, Zhang X, Kaya K (1996) Fate of toxic cyclic heptapeptides, microcystins, in toxic cyanobacteria upon grazing by the mixotrophic flagellate Poterioochromonas malhamensis (Ochromonadales, Chrysophyceae). Phycologia 35:203–206CrossRefGoogle Scholar
  77. Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407:2711–2723CrossRefGoogle Scholar
  78. Wilde EW, Benemann JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812CrossRefGoogle Scholar
  79. Wu B, Wang G, Wu J, Fu Q, Liu C (2014) Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS One 9:e102101CrossRefGoogle Scholar
  80. Yu Y, Zhou Y, Wang Z, Torres OL, Guo R, Chen J (2017) Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci Rep 7:4168CrossRefGoogle Scholar
  81. Zhang R, Tang J, Li J, Cheng Z, Chaemfa C, Liu D, Zheng Q, Song M, Luo C, Zhang G (2013) Occurrence and risks of antibiotics in the coastal aquatic environment of the Yellow Sea, North China. Sci Total Environ 450–451:197–204CrossRefGoogle Scholar
  82. Zhou P, Su C, Li B, Qian Y (2006) Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes. J Environ Eng 132:129–136CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Animal Science (Genetics), School of Veterinary MedicineComplutense University of MadridMadridSpain
  2. 2.Pharmaceutics and Food Technology and IUFI (Instituto Universitario de Farmacia Industrial)Complutense University of MadridMadridSpain

Personalised recommendations