Lipid accumulation in selected Tetraselmis strains

  • M. Carneiro
  • V. Pôjo
  • F. X. Malcata
  • A. OteroEmail author


Marine microalgae constitute a natural source of compounds (e.g., alkanes, triacylglycerols) useful for biodiesel production—yet improvement of lipid productivity by microalgae is a sine qua non for the economic feasibility of such a microalga-based process. Toward this goal, five Tetraselmis strains, Tetraselmis suecica UW605, T. suecia AROSA, and three Tetraselmis sp. strains, coded as lipogenic (63LG and 75LG) or non-lipogenic (46NLG) on the basis of stationary-phase cell flotation features, were cultured semi-continuously and subjected to 10 and 30% renewal rates; the effects upon growth rate and lipidic profile were accordingly assessed. As expected, cell productivity by all strains was higher under a renewal rate of 30%. Chlorophyll, protein, and total lipid content per cell also increased with the highest renewal rate. Conversely, cell content of neutral lipids, measured with Nile red staining, decreased with increasing renewal rate. The non-lipogenic strain 46NLG revealed a much lower total lipid content, at the 10% renewal rate, than all other strains, but a higher neutral lipid content. This result supports the use of the flotation method for the selection of lipogenic strains. The diverse profiles of the various Tetraselmis strains and the effect of renewal rate on their neutral lipid content emphasize the importance of strain screening to promote a suitable microalgae selection for biodiesel production purposes.


Tetraselmis Chlorophyta Renewal rate Lipid Neutral lipid 



In memoriam of Prof. R. A. Lewin, c/o Scripps Institution of Oceanography, University of California (San Diego), who isolated the strains used in this study.

Funding information

This work was supported by COST Action ES1408 European network for algal bioproducts (EUALGAE) and by project DINOSSAUR [PTDC/BBB-EBB/1374/2014-POCI-01-0145-FEDER-016640], funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI).


  1. Agusti S, Duarte CM, Kalff J (2018) Algal cell size and the maximum density and biomass of phytoplankton. Limnol Oceanogr 32:983–986CrossRefGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method for the total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  3. Bondioli P, Della Bella L, Rivolta G, Chini Zittelli G, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114:567–572CrossRefGoogle Scholar
  4. Brown MR, Garland CD, Jeffrey WS, Jameson I, Leroi JM (1993) The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis, Pavlova and Nannochloropsis. J Appl Phycol 5:285–296CrossRefGoogle Scholar
  5. Custódio L, Soares F, Pereira H, Barreira L, Vizetto-Duarte C, Rodrigues MJ, Raute AP, Alberíci F, Varela J (2014) Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: possible application in the pharmaceutical and functional food industries. J Appl Phycol 26:151–161CrossRefGoogle Scholar
  6. Dahmen-Ben Moussa I, Chtourou H, Karray F, Sayadi S, Dhouib A (2017) Nitrogen or phosphorus repletion strategies for enhancing lipid or carotenoid production from Tetraselmis marina. Bioresour Technol 238:325–332CrossRefGoogle Scholar
  7. Dammak M, Hadrich B, Miladi R, Barkallah M, Hentati F, Hachicha R, Laroche C, Michaud P, Fendri I, Abdelkafi S (2017) Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids Health Dis 16:1–13CrossRefGoogle Scholar
  8. Fabregas J, Abalde J, Herrero C, Cabezas B, Veiga M (1984) Growth of the marine microalga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture 42:207–215CrossRefGoogle Scholar
  9. Fábregas J, Patiño M, Vecino E, Cházaro F, Otero A (1995) Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol 43:617–621CrossRefGoogle Scholar
  10. Fábregas J, Patino M, Morales ED, Cordero B, Otero A (1996) Optimal renewal rate and nutrient concentration for the production of the marine microalga Phaeodactylum tricornutum in semicontinuous cultures. Appl Environ Microbiol 62:266–268Google Scholar
  11. Fábregas J, García D, Morales E, Domínguez A, Otero A (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. J Ferment Bioeng 86:477–481CrossRefGoogle Scholar
  12. Fon-Sing S, Borowitzka MA (2016) Isolation and screening of euryhaline Tetraselmis spp. suitable for large-scale outdoor culture in hypersaline media for biofuels. J Appl Phycol 28:1–14CrossRefGoogle Scholar
  13. Guzmán HM, de la Jara Valido A, Duarte LC, Presmanes KF, Valido A, La J, Duarte LC, Presmanes KF (2010) Estimate by means of flow cytometry of variation in composition of fatty acids from Tetraselmis suecica in response to culture conditions. Aquac Int 18:189–199CrossRefGoogle Scholar
  14. He Q, Yang H, Hu C (2016) Culture modes and financial evaluation of two oleaginous microalgae for biodiesel production in desert area with open raceway pond. Bioresour Technol 218:571–579CrossRefGoogle Scholar
  15. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. Methods Microbiol 58:209–344CrossRefGoogle Scholar
  16. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  17. Lewin RA, Cheng L (1989) Some lipogenic, eukaryotic, picopleuston algae from the Caribbean region. Phycologia 28:96–108CrossRefGoogle Scholar
  18. Lim DKY, Garg S, Timmins M, Zhang ESB, Thomas-Hall SR, Schuhmann H, LI Y, Schenk PM (2012) Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLoS One 7:e40751CrossRefGoogle Scholar
  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  20. Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J Lipid Res 7:574–576Google Scholar
  21. Martínez-Macías R, Meza-Escalante E, Serrano-Palacios D, Gortáres-Moroyoqui P, Ruíz-Ruíz PE, Ulloa-Mercado G (2018) Effect of fed-batch and semicontinuous regimen on Nannochloropsis oculata grown in different culture media to high-value products. J Chem Technol Biotechnol 93:585–590CrossRefGoogle Scholar
  22. Montero MF, Aristizábal M, García Reina G (2011) Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting. J Appl Phycol 23:1053–1057CrossRefGoogle Scholar
  23. Otero A, Fabregas J (1997) Changes in the nutrient composition of Tetraselmis suecica cultured semicontinuously with different nutrient concentrations and renewal rates. Aquaculture 159:111–123CrossRefGoogle Scholar
  24. Otero A, García D, Fábregas J (1997) Factors controlling eicosapentaenoic acid production in semicontinuous cultures of marine microalgae. J Appl Phycol 9:465–469CrossRefGoogle Scholar
  25. Pereira H, Gangadhar KN, Schulze PSC, Santos T, De Sousa CB, Schueler LM, Custódio L, Malcata FX, Gouveia L, Varela JCS, Barreira L (2016) Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 6:1–11CrossRefGoogle Scholar
  26. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta Bioenerg 975:384–394CrossRefGoogle Scholar
  27. Rodolfi L, Chini Zittelli G, Bassi NNN, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  28. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676CrossRefGoogle Scholar
  29. Sansone C, Galasso C, Orefice I, Nuzzo G, Luongo E, Cutignano A, Romano G, Brunet C, Fontana A, Esposito F, Ianora A (2017) The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Sci Rep 7:41215CrossRefGoogle Scholar
  30. Satpati GG, Pal R (2015) Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Ann Microbiol 65:937–949CrossRefGoogle Scholar
  31. Sharma K, Li Y, Schenk PM (2014) UV-C-mediated lipid induction and settling, a step change towards economical microalgal biodiesel production. Green Chem 16:3539–3548CrossRefGoogle Scholar
  32. Tsai HP, Chuang LT, Chen CNN (2016) Production of long chain omega-3 fatty acids and carotenoids in tropical areas by a new heat-tolerant microalga Tetraselmis sp. DS3. Food Chem 192:682–690CrossRefGoogle Scholar
  33. Tulli F, Chini Zittelli G, Giorgi G, Poli BM, Tibaldi E, Tredici MR (2012) Effect of the inclusion of dried Tetraselmis suecica on growth, feed utilization, and fillet composition of European sea bass juveniles fed organic diets. J Aquat Food Prod Technol 21:188–197CrossRefGoogle Scholar
  34. Xu D, Gao Z, Li F, Fan X, Zhang X, Ye N, Mou S, Liang C, Li D (2013) Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresour Technol 127:386–390CrossRefGoogle Scholar
  35. Zittelli GC, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture 261:932–943CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LEPABE – Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Departamento de Engenharia QuímicaFaculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.Instituto de Acuicultura and Departamento de Microbiología y ParasitologíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations