Advertisement

Influence of ambient temperature on the photosynthetic activity and phenolic content of the intertidal Cystoseira compressa along the Italian coastline

  • F. P. MancusoEmail author
  • C. M. Messina
  • A. Santulli
  • V. A. Laudicella
  • C. Giommi
  • G. Sarà
  • L. Airoldi
Article

Abstract

Understanding the physiological responses of intertidal seaweeds to environmental factors is fundamental to characterize their local physiological adaptation and success in the face of climate change. We measured the photosynthetic activity and the total phenolic content of the intertidal alga Cystoseira compressa and explored their relationship with latitude or local ambient air and seawater temperatures. Our results show that, when submerged, the photosynthetic activity of C. compressa showed values typical for non-stressed thalli, and the seawater temperatures found across sites explained the variability of these values. We observed a decrease in the photosynthetic activity of C. compressa when exposed to air, compared to a submerged condition. This activity remained stationary up to 28 °C and then started to decrease with higher air temperatures. The total phenolic content of C. compressa at the end of low tide changed across the study sites from 0.12 to 0.53 % DW. Phenolic variability was explained by the long-term thermal water conditions experienced by the algae, rather than short-term variations encountered during tidal cycles. Overall, our results suggest a crucial role played by temperature in driving the physiological traits of the intertidal C. compressa.

Keywords

Phaeophyta Cystoseira compressa Intertidal Maximum quantum yield Phenolic content Seawater and air temperature 

Notes

Funding information

This study was funded by the Italian project PRIN TETRIS (observing, modeling, and TEsting synergies and TRade-offs for the adaptive management of multiple impacts in coastal systems) 2010 grant n. 2010PBMAXP_003, funded by the Italian Ministry of Education, University and Research. The paper is also an in-kind contribution to Task 3.2—Conservation. Implications for conservation, habitat restoration, and policy of MARFOR project (Biodiversa, ERA-LEARN 2020 grant agreement No. 645782).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10811_2019_1802_MOESM1_ESM.docx (91 kb)
ESM 1 (DOCX 91 kb)

References

  1. Abdala-Díaz RT, Cabello-Pasini A, Pérez-Rodríguez E, Conde Álvarez RM, Figueroa FL (2006) Daily and seasonal variations of optimum quantum yield and phenolic compounds in Cystoseira tamariscifolia (Phaeophyta). Mar Biol 148:459–465CrossRefGoogle Scholar
  2. Amsler CD, Fairhead VA (2005) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91CrossRefGoogle Scholar
  3. Arnold T, Tanner C, Hatch W (1995) Phenotypic variation in polyphenolic content of the tropical brown alga Lobophora variegata as a function of nitrogen availability. Mar Ecol Prog Ser 123:177–183Google Scholar
  4. Baghdadli D, Tremblin G, Pellegrini M, Coudret A (1990) Effects of environmental parameters on net photosynthesis of a free-living brown seaweed, Cystoseira barbata forma repens: determination of optimal photosynthetic culture conditions. J Appl Phycol 2:281–287CrossRefGoogle Scholar
  5. Becker S, Walter B, Bischof K (2009) Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Bot Mar 52:609–616Google Scholar
  6. Bell EC (1993) Photosynthetic response to temperature and desiccation of the intertidal alga Mastocarpus papillatus. Mar Biol 117:337–346CrossRefGoogle Scholar
  7. Bengtsson M, Sjøtun K, Øvreås L (2010) Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea. Aquat Microb Ecol 60:71–83CrossRefGoogle Scholar
  8. Boudet A-M (2007) Evolution and current status of research in phenolic compounds. Phytochemistry 68:2722–2735CrossRefGoogle Scholar
  9. Bruhn J, Gerard VA (1996) Photoinhibition and recovery of the kelp Laminaria saccharina at optimal and superoptimal temperatures. Mar Biol 125:639–648CrossRefGoogle Scholar
  10. Celis-Plá PSM, Korbee N, Gómez-Garreta A, Figueroa FL (2014) Seasonal photoacclimation patterns in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta). Sci Mar 78:377–388CrossRefGoogle Scholar
  11. Colvard NB, Carrington E, Helmuth B (2014) Temperature-dependent photosynthesis in the intertidal alga Fucus gardneri and sensitivity to ongoing climate change. J Exp Mar Biol Ecol 458:6–12CrossRefGoogle Scholar
  12. Connan S, Goulard F, Stiger V, Deslandes E, Gall EA (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416CrossRefGoogle Scholar
  13. Connan S, Deslandes E, Gall EA (2007) Influence of day–night and tidal cycles on phenol content and antioxidant capacity in three temperate intertidal brown seaweeds. J Exp Mar Biol Ecol 349:359–369CrossRefGoogle Scholar
  14. Cruces E, Huovinen P, Gómez I (2013) Interactive effects of UV radiation and enhanced temperature on photosynthesis, phlorotannin induction and antioxidant activities of two sub-Antarctic brown algae. Mar Biol 160:1–13CrossRefGoogle Scholar
  15. Cruces E, Flores-Molina MR, Díaz MJ, Huovinen P, Gómez I (2018) Phenolics as photoprotective mechanism against combined action of UV radiation and temperature in the red alga Gracilaria chilensis? J Appl Phycol 30:1247–1257CrossRefGoogle Scholar
  16. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211CrossRefGoogle Scholar
  17. Eggert A (2012) Seaweed responses to temperature. In: Wiencke C, Bischof K (eds) Seaweed biology: novel insights into ecophysiology, Ecology and Utilization. Springer, Berlin, pp 47–66CrossRefGoogle Scholar
  18. Fernández Á, Arenas F, Trilla A, Rodríguez S, Rueda L, Martínez B (2015) Additive effects of emersion stressors on the ecophysiological performance of two intertidal seaweeds. Mar Ecol Prog Ser 536:135–147CrossRefGoogle Scholar
  19. Folin O, Ciocalteau V (1927) On tyrosine and tryptophane determinations in proteins. J Biol Chem 73:627–648Google Scholar
  20. Gómez I, López-Figueroa F, Ulloa N, Morales V, Lovengreen C, Huovinen P, Hess S (2004) Patterns of photosynthesis in 18 species of intertidal macroalgae from southern Chile. Mar Ecol Prog Ser 270:103–116CrossRefGoogle Scholar
  21. Gómez I, Español S, Véliz K, Huovinen P (2016) Spatial distribution of phlorotannins and its relationship with photosynthetic UV tolerance and allocation of storage carbohydrates in blades of the kelp Lessonia spicata. Mar Biol 163:110CrossRefGoogle Scholar
  22. Gómez-Garreta A, Barceló M, Gallardo T, Pérez-Ruzafa I, Ribera MA, Rull J (2002) Flora Phycologica Iberica, vol 1. Fucales, Universida, MurciaGoogle Scholar
  23. Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384CrossRefGoogle Scholar
  24. Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373–404CrossRefGoogle Scholar
  25. Kamiya M, Nishio T, Yokoyama A, Yatsuya K, Nishigaki T, Yoshikawa S, Ohki K (2010) Seasonal variation of phlorotannin in sargassacean species from the coast of the sea of Japan. Phycol Res 58:53–61CrossRefGoogle Scholar
  26. Lasinio GJ, Tullio MA, Ventura D, Ardizzone G, Abdelahad N (2017) Statistical analysis of the distribution of infralittoral Cystoseira populations on pristine coasts of four Tyrrhenian islands: proposed adjustment to the CARLIT index. Ecol Indic 73:293–301CrossRefGoogle Scholar
  27. Mancuso FP, Strain EMA, Piccioni E, De Clerck O, Sarà G, Airoldi L (2018) Status of vulnerable Cystoseira populations along the Italian infralittoral fringe, and relationships with environmental and anthropogenic variables. Mar Pollut Bull 129:762–771CrossRefGoogle Scholar
  28. Mannino AM, Vaglica V, Oddo E (2014) Seasonal variation in total phenolic content of Dictyopteris polypodioides (Dictyotaceae) and Cystoseira amentacea (Sargassaceae) from the Sicilian coast. Flora Mediterr 24:39–50CrossRefGoogle Scholar
  29. Mannino AM, Vaglica V, Cammarata M, Oddo E (2016) Effects of temperature on total phenolic compounds in Cystoseira amentacea (C. Agardh) Bory (Fucales, Phaeophyceae) from southern Mediterranean Sea. Plant Biosyst 150:152–160CrossRefGoogle Scholar
  30. Mannino AM, Vaglica V, Oddo E (2017) Interspecific variation in total phenolic content in temperate brown algae. J Biol Res - Boll della Soc Ital di Biol Sper 90.  https://doi.org/10.4081/jbr.2017.6578
  31. Messina C, Renda G, Laudicella V, Trepos R, Fauchon M, Hellio C, Santulli A (2019) From ecology to biotechnology, study of the defense strategies of algae and halophytes (from Trapani Saltworks, NW Sicily) with a focus on antioxidants and antimicrobial properties. Int J Mol Sci 20:881CrossRefGoogle Scholar
  32. Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998CrossRefGoogle Scholar
  33. Parys S, Kehraus S, Pete R, Küpper FC, Glombitza K-W, König GM (2009) Seasonal variation of polyphenolics in Ascophyllum nodosum (Phaeophyceae). Eur J Phycol 44:331–338CrossRefGoogle Scholar
  34. Pavia H, Toth G (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225CrossRefGoogle Scholar
  35. Pereira TR, Engelen AH, Pearson GA, Valero M, Serrão EA (2015) Response of kelps from different latitudes to consecutive heat shock. J Exp Mar Biol Ecol 463:57–62CrossRefGoogle Scholar
  36. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:1–38CrossRefGoogle Scholar
  37. R Core Team (2018) R: a language and environment for statistical computingGoogle Scholar
  38. Raffaelli D, Hawkins SJ (1996) Intertidal ecology. Chapman and Hall, LondonGoogle Scholar
  39. Ragan MA, Glombitza K-W (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:129–241Google Scholar
  40. Sarà G, Milanese M, Prusina I, Sarà A, Angel DL, Glamuzina B, Nitzan T, Freeman S, Rinaldi A, Palmeri V, Montalto V, Lo Martire M, Gianguzza P, Arizza V, Lo Brutto S, de Pirro M, Helmuth B, Murray J, de Cantis S, Williams GA (2014) The impact of climate change on Mediterranean intertidal communities: losses in coastal ecosystem integrity and services. Reg Environ Chang 14:5–17CrossRefGoogle Scholar
  41. Steinberg PD (1989) Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78:373–382CrossRefGoogle Scholar
  42. Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409CrossRefGoogle Scholar
  43. SWANSON AK, FOX CH (2007) Altered kelp (Laminariales) phlorotannins and growth under elevated carbon dioxide and ultraviolet-B treatments can influence associated intertidal food webs. Glob Chang Biol 13:1696–1709CrossRefGoogle Scholar
  44. Van Alstyne KL, McCarthy JJ, Hustead CL, Duggins DO (1999) Geographic variation in polyphenolic levels of northeastern Pacific kelps and rockweeds. Mar Biol 133:371–379CrossRefGoogle Scholar
  45. van Hees DH, Olsen YS, Wernberg T, Van Alstyne KL, Kendrick GA (2017) Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia. Mar Biol 164:1–13CrossRefGoogle Scholar
  46. Williams SL, Dethier MN (2005) High and dry: variation in net photosynthesis of the intertidal seaweed Fucus gardneri. Ecology 86:2373–2379Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.University of Bologna, Dipartimento di Scienze Biologiche, Geologiche ed Ambientali (BIGEA) & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), UO CoNISMaRavennaItaly
  2. 2.Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed EcotossicologiaUniversità degli Studi di PalermoTrapaniItaly
  3. 3.Istituto di biologia MarinaConsorzio Universitario della Provincia di TrapaniTrapaniItaly
  4. 4.Dipartimento di Scienze della Terra e del MareUniversity of PalermoPalermoItaly

Personalised recommendations