Advertisement

Cryopreservation of Synechococcus elongatus UTEX 2973

  • Ratanachat Racharaks
  • Jordan PecciaEmail author
Article

Abstract

The rapidly growing cyanobacterium Synechococcus elongatus UTEX 2973 is an ideal candidate for genetic modification. A cryopreservation protocol suitable for this strain was developed by optimizing three main parameters: cryoprotectant type and concentration, cell growth phase, and freezing procedure. Cells harvested in stationary phase were more viable after cryopreservation compared to log phase and > 80% viability could be obtained by any one of the three freezing procedures tested by using 1% (v/v) dimethyl sulfoxide (DMSO) as a cryoprotectant. Application of the optimized protocol with a freezing procedure which controlled the rate of cooling to − 1 °C min−1 demonstrated that the presence of genetic modifications resulted in reduced cell viability after cryopreservation. Cryopreservation of knockout mutant strains indicated that the deletion of either the glucose-1-phosphate adenylyltransferase (glgC) gene or the acyl-ACP synthetase (aas) gene reduced viability by 30 or 50%, respectively. Synechococcus elongatus UTEX 2973 could be cryopreserved up to 6 months and recovered either in liquid or solid media with no significant reduction in viability.

Keywords

Cyanobacteria Cryopreservation Cryoprotectant Synechococcus elongatus 2973 Glycogen CRISPR-Cas9 

Notes

References

  1. APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DCGoogle Scholar
  2. Bui TV, Ross IL, Jakob G, Hankamer B (2013) Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae. PLoS One 8:e78668CrossRefGoogle Scholar
  3. Canavate JP, Lubian LM (1995) Relationship between cooling rates, cryoprotectant concentrations and salinities in the cryopreservation of marine microalgae. Mar Biol 124:325–334CrossRefGoogle Scholar
  4. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728CrossRefGoogle Scholar
  5. Crutchfield ALM, Diller KR, Brand JJ (1999) Cryopreservation of Chlamydomonas reinhardtii (Chlorophyta). Eur J Phycol 34:43–52CrossRefGoogle Scholar
  6. Day JG (2007) Cryopreservation of microalgae and cyanobacteria. In: Day JG, Stacey GN (eds) Cryopreservation and freeze-drying protocols. Humana Press, Totowa, pp 141–151CrossRefGoogle Scholar
  7. Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CP (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 179:1998–2005CrossRefGoogle Scholar
  8. Esteves-Ferreira AA, Correa DM, Carneiro APS, Rosa RM, Loterio R, Araujo WL (2013) Comparative evaluation of different preservation methods for cyanobacterial strains. J Appl Phycol 25:919–929CrossRefGoogle Scholar
  9. Grundel M, Scheunemann R, Lockau W, Zilliges Y (2012) Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:3032–3043CrossRefGoogle Scholar
  10. Hickman JW, Kotovic KM, Miller C, Warrener P, Kaiser B, Jurista T, Budde M, Cross F, Roberts JM, Carleton M (2013) Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942. Algal Res 2:98–106CrossRefGoogle Scholar
  11. Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46:205–229CrossRefGoogle Scholar
  12. Iwamoto K, Fukuyo S, Okuda M, Kobayashi M, Shiraiwa Y (2012) Cryopreservation of the chlorophyll d-containing cyanobacterium Acaryochloris marina. Procedia Environ Sci 15:118–125CrossRefGoogle Scholar
  13. John DT, John RA (1996) Viability of pathogenic Acanthamoeba and Naegleria and virulence of N. fowleri during long-term cryopreservation. Folia Parasitol 43:43–46PubMedGoogle Scholar
  14. Kojima K, Keta S, Uesaka K, Kato A, Takatani N, Ihara K, Omata T, Aichi M (2016) A simple method for isolation and construction of markerless cyanobacterial mutants defective in acyl-acyl carrier protein synthetase. Appl Microbiol Biotechnol 100:10107–10113CrossRefGoogle Scholar
  15. Li X, Shen CR, Liao JC (2014) Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth Res 120:301–310CrossRefGoogle Scholar
  16. Liu X, Sheng J, Curtiss R 3rd (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108:6899–6904CrossRefGoogle Scholar
  17. Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Academic Press, NY, pp 145–156Google Scholar
  18. Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355CrossRefGoogle Scholar
  19. Miao X, Wu Q, Wu G, Zhao N (2003) Sucrose accumulation in salt-stressed cells of agp gene deletion-mutant in cyanobacterium Synechocystis sp PCC 6803. FEMS Microbiol Lett 218:71–77CrossRefGoogle Scholar
  20. Mori F, Erata M, Watanabe M (2002) Cryopreservation of cyanobacteria and green algae [Chlorophyceae] in the NIES-collection [Japan]. Microbiol Cult Collect 18:45–55Google Scholar
  21. Morris GJ (1978) Cryopreservation of 250 strains of Chlorococcales by the method of two-step cooling. Br Phycol J 13:15–24CrossRefGoogle Scholar
  22. Mortain-Bertrand A, Etchart F, M-Td B (1996) A method for the cryoconservation of Dunaliella salina (Chlorophyceae): effect of glycerol and cold adaptation. J Phycol 32:346–352CrossRefGoogle Scholar
  23. Muth G, Nussbaumer B, Wohlleben W, Puhler A (1989) A vector system with temperature-sensitive replication for gene disruption and mutational cloning in Streptomycetes. Mol Gen Genet 219:341–348CrossRefGoogle Scholar
  24. Park H-K (2006) Long-term preservation of bloom-forming cyanobacteria by cryopreservation. Algae 21:125–131CrossRefGoogle Scholar
  25. Rastoll MJ, Ouahid Y, Martin-Gordillo F, Ramos V, Vasconcelos V, del Campo FF (2013) The development of a cryopreservation method suitable for a large cyanobacteria collection. J Appl Phycol 25:1483–1493CrossRefGoogle Scholar
  26. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  27. Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149CrossRefGoogle Scholar
  28. Ruffing AM, Jones HD (2012) Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109:2190–2199CrossRefGoogle Scholar
  29. Shabestary K, Hudson EP (2016) Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metab Eng Commun 3:216–226CrossRefGoogle Scholar
  30. Shiraishi H (2016) Cryopreservation of the edible alkalophilic cyanobacterium Arthrospira platensis. Biosci Biotechnol Biochem 80:2051–2057CrossRefGoogle Scholar
  31. Song K, Tan X, Liang Y, Lu X (2016) The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production. Appl Microbiol Biotechnol 100:7865–7875CrossRefGoogle Scholar
  32. Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76:3153–3159CrossRefGoogle Scholar
  33. Takatani N, Use K, Kato A, Ikeda K, Kojima K, Aichi M, Maeda S, Omata T (2015) Essential role of acyl-ACP Synthetase in acclimation of the cyanobacterium Synechococcus elongatus strain PCC 7942 to high-light conditions. Plant Cell Physiol 56:1608–1615CrossRefGoogle Scholar
  34. Taylor R, Fletcher RL (1998) Cryopreservation of eukaryotic algae - a review of methodologies. J Appl Phycol 10:481–501CrossRefGoogle Scholar
  35. Urmeneta J, Navarrete A, Huete J, Guerrero R (2003) Isolation and characterization of cyanobacteria from microbial mats of the Ebro Delta, Spain. Curr Microbiol 46:199–204CrossRefGoogle Scholar
  36. Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15:115CrossRefGoogle Scholar
  37. Work VH, Melnicki MR, Hill EA, Davies FK, Kucek LA, Beliaev AS, Posewitz MC (2015) Lauric acid production in a glycogen-less strain of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 3:48Google Scholar
  38. Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB (2015) Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 5:8132CrossRefGoogle Scholar
  39. Zhu CJ, Lee YK (1997) Determination of biomass dry weight of marine microalgae. J Appl Phycol 9:189–194CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Environmental EngineeringYale UniversityNew HavenUSA

Personalised recommendations