Advertisement

Enzyme-assisted extraction of proteins from the seaweeds Macrocystis pyrifera and Chondracanthus chamissoi: characterization of the extracts and their bioactive potential

  • Valeria Vásquez
  • Ronny Martínez
  • Claudia BernalEmail author
Article

Abstract

Seaweeds have great potential as raw material for protein-based functional ingredients due to their high protein content; however, their complex polysaccharide matrix could hinder protein extraction. In this work, protein extracts from the brown seaweed Macrocystis pyrifera and the red seaweed Chondracanthus chamissoi were obtained by optimization of an enzyme-assisted extraction using cellulase to enhance the protein extraction yields. The comparison of protein content obtained by enzymatic and non-enzymatic methods suggests that the disruption of the cellulase-sensitive carbohydrate matrix increases protein content on the extract. The protein extraction yields were 74.6% for M. pyrifera (18 h, 1/10 enzyme/seaweed ratio) and 36.1% for C. chamissoi (12 h, 1/10 enzyme/seaweed ratio). Both protein extracts showed antioxidant activity and M. pyrifera protein extract showed a potential antihypertensive activity. These results establish a firm basis for further studies on seaweed protein extracts as potential functional ingredients, or towards the production of bioactive peptides through a straightforward, and environmentally sustainable methodology.

Keywords

Phaeophyta Rhodophyta Carbohydrases Polysaccharides Protein Seaweeds ACE-inhibitory activity Extraction 

Notes

Acknowledgments

The authors gratefully acknowledge the support of CONICYT-PCHA Doctorate Grant 2016-21160126.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10811_2018_1712_MOESM1_ESM.docx (542 kb)
ESM 1 (DOCX 542 kb)

References

  1. Admassu H, Gasmalla MAA, Yang R, Zhao W (2018) Bioactive peptides derived from seaweed protein and their benefits: antihypertensive, antioxidant, and antidiabetic properties. J Food Sci 83:6–16CrossRefGoogle Scholar
  2. AOAC (1990) Official Methods of Analysis. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  3. Astorga-España MS, Mansilla A (2014) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 26:973–978CrossRefGoogle Scholar
  4. Barbarino E, Lourenςo SO (2005) An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. J Appl Phycol 17:447–460CrossRefGoogle Scholar
  5. Barth A (2007) Infrared spectroscopy of proteins. BBA-Bioenergetics 1767:1073–1101CrossRefGoogle Scholar
  6. Bleakley S, Hayes M (2017) Review: algal proteins: extraction, application, and challenges concerning production. Foods 6:1–34CrossRefGoogle Scholar
  7. Charoensiddhi S, Conlon MA, Franco CMM, Zhang W (2017) The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol 70:20–33CrossRefGoogle Scholar
  8. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  9. Fleurence J (1999) The enzymatic degradation of algal cell walls: a useful approach for improving protein accessibility? J Appl Phycol 11:313–314CrossRefGoogle Scholar
  10. Fleurence J (2004) Seaweed proteins. In: Yada RY (ed) Proteins in food processing. Woodhead Publishing Limited, Cambridge, pp 197–213CrossRefGoogle Scholar
  11. Fleurence J, Le Coeur C, Mabeau S, Maurice M, Landrein A (1995) Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. J Appl Phycol 7:577–582CrossRefGoogle Scholar
  12. Gómez-Ordóñez E, Rupérez P (2011) FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll 25:1514–1520CrossRefGoogle Scholar
  13. Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture and phytochemical constituents of edible Irish brown seaweed. LWT-Food Sci Technol 44:1266–1272CrossRefGoogle Scholar
  14. Harnedy PA, FitzGerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT-Food Sci Technol 51:375–382CrossRefGoogle Scholar
  15. Jiménez-Escrig A, Gómez-Ordóñez E, Rúperez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132CrossRefGoogle Scholar
  16. Le Guillard C, Bergé J, Donnay-Moreno C, Bruzac S, Ragon J, Fleurence J, Dumay J (2016) Soft liquefaction of the red seaweed Grateloupia turuturu Yamada by ultrasounds-assisted enzymatic hydrolysis process. J Appl Phycol 28:2575–2585CrossRefGoogle Scholar
  17. Leyton A, Pezoa-Conte R, Barriga A, Buschmann AH, Maki-Arvela P, Mikkola J-P, Lienqueo ME (2016) Identification and efficient extraction method of phlorotannins from the brown seaweed Macrocystis pyrifera using an orthogonal experimental design. Algal Res 16:201–208CrossRefGoogle Scholar
  18. Li G, Liu H, Shi Y, Le G (2005) Direct spectrophotometric measurement of angiotensin I-converting enzyme inhibitory activity for screening bioactive peptides. J Pharmaceut Biomed 37:219–224CrossRefGoogle Scholar
  19. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  20. Olivares-Molina A, Fernández K (2016) Comparison of different extraction techniques for obtaining extracts from brown seaweeds and their potential effects as angiotensin I-converting enzyme (ACE) inhibitors. J Appl Phycol 28:1295–1302CrossRefGoogle Scholar
  21. Ortiz J (2011a) Composición Nutricional y funcional de Algas Pardas chilenas: Macrocystis pyrifera y Durvillaea antarctica. Monografía. Laboratorio de Química y Análisis de Alimentos, Departamento de Ciencia de los Alimentos y Tecnología Química. Universidad de Chile, ChileGoogle Scholar
  22. Ortiz J (2011b) Composición Nutricional y Funcional de Algas Rodofíceas Chilenas. Monografía. Laboratorio de Química y Análisis de Alimentos, Departamento de Ciencia de los Alimentos y Tecnología Química. Universidad de Chile, ChileGoogle Scholar
  23. Paiva L, Lima E, Neto AI, Baptista J (2017) Isolation and characterization of angiotensin I-converting enzyme (ACE) inhibitory peptides from Ulva rigida C. Agardh protein hydrolysate. J Funct Foods 26:65–76CrossRefGoogle Scholar
  24. Peinado I, Girón J, Koutsidis G, Ames JM (2014) Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res Int 66:36–40CrossRefGoogle Scholar
  25. Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 23:1903–1909CrossRefGoogle Scholar
  26. Sánchez-Camargo A, Montero L, Stiger-Pouvreau V, Tanniou A, Cifuentes A, Herrero M, Ibañez E (2016) Considerations on the use of enzyme-assisted extraction in combination with pressurized liquids to recover bioactive compounds from algae. Food Chem 192:67–74CrossRefGoogle Scholar
  27. Sari YW, Mulder WJ, Sanders JPM, Bruins ME (2015) Towards plant protein refinery: review on protein extraction using alkali and potential enzymatic assistance. Biotechnol J 10:1138–1157CrossRefGoogle Scholar
  28. Sernapesca (2016) Desembarque Total Región. Anuario Estadístico Nacional de Pesca. Desembarque Servicio Nacional de Pesca y Acuicultura, ChileGoogle Scholar
  29. Sharma S, Horn SJ (2016) Enzymatic saccharification of brown seaweed for production of fermentable sugars. Bioresour Technol 213:155–161CrossRefGoogle Scholar
  30. Siriwardhana N, Kim K, Lee K, Kim S, Ha J, Song C, Lee J, Leon Y (2008) Optimization of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. Int J Food Sci Technol 43:587–596CrossRefGoogle Scholar
  31. Stiger-Pouvreau V, Bourgougnon N, Deslandes E (2016) Carbohydrates from seaweeds. In: Fleurence J, Levine I (eds) Seaweed in health and disease prevention. Academic Press, New York, pp 223–274Google Scholar
  32. Tardioli PW, Pedroche J, Giordano RLC, Fernández-Lafuente R, Guisán JM (2003) Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxil agarose. Biotechnol Prog 19:352–360CrossRefGoogle Scholar
  33. Uribe E, Marin D, Vega-Gálvez A, Quispe-Fuentes I, Rodríguez A (2016) Assessment of vacuum-dried peppermint (Menta piperita L.) as a source of natural antioxidants. Food Chem 190:559–565CrossRefGoogle Scholar
  34. Vásquez JA, Alonso Vega JM (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277CrossRefGoogle Scholar
  35. Vega-Gálvez A, Ayala-Aponte A, Notte E, de la Fuente L, Lemus-Mondaca R (2008) Mathematical modeling of mass transfer during convective dehydration of brown algae Macrocystis pyrifera. Dry Technol 26:1610–1616CrossRefGoogle Scholar
  36. Wang T, Jónsdóttir R, Kristinsson HG, Hreggvidsson GO, Jónsson JO, Thorkelsson G, Ólafsdóttir G (2010) Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT-Food Sci Technol 43:1387–1393CrossRefGoogle Scholar
  37. Wijesinghe WAJP, Jeon Y (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12CrossRefGoogle Scholar
  38. Wu SJ (2012) Degradation of κ-carrageenan by hydrolysis with commercial α-amylase. Carbohydr Polym 89:394–396CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Valeria Vásquez
    • 1
  • Ronny Martínez
    • 1
    • 2
  • Claudia Bernal
    • 1
    • 2
    Email author
  1. 1.Tecnología Enzimática para Bioprocesos, Departamento de Ingeniería de AlimentosUniversidad de La SerenaLa SerenaChile
  2. 2.Instituto de Investigación Multidisciplinario en Ciencia y TecnologíaUniversidad de La SerenaLa SerenaChile

Personalised recommendations