Advertisement

Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: a Circular Economy challenge

  • Alberto Rodríguez LópezEmail author
  • Silvia Burgos Rodríguez
  • Roberto Andrés Vallejo
  • Palmira Guarnizo García
  • María Dolores Macías-Sánchez
  • Miguel Gutiérrez Díaz
  • Rafael González Librán
  • Francisco Javier Fernández Acero
Article

Abstract

This research was undertaken in the framework of the Circular Economy. Its aim is to assess the technical feasibility and sustainability of a semi-industrial process for the outdoor cultivation of Nannochloropsis gaditana, using flue gases, on demand, from a coal-fired power generation plant. Within this main aim, three secondary objectives were defined: (i) to produce an accurate forecast of the annual average biomass production; (ii) to assess how the production rate and the biochemical composition of the biomass vary with the weather conditions over the course of a year; and (iii) to identify suitable markets for the biomass produced, in accordance with Spanish legislation. The study was carried out over 2 years, and an extra year was taken to analyze the results. The importance of this research is that it covers the lack of current knowledge, based on the available literature, regarding experimentation with microalgae culture outdoors, on a semi-industrial scale of 10,000 L, for a period of two full years. Our results show that, firstly, productivity changes from 0.025 ± 0.010 g (dry weight) L−1 day−1 (g d.wt L−1 day−1) to 0.160 ± 0.030 g d.wt L−1 day−1, as irradiation increases, and secondly, that the content of polyunsaturated fatty acids decreases, from 4.770 ± 0.770% dry weight (% d.wt) to 3.220 ± 0.535% d.wt, as irradiation increases. The maintenance of the culture during a complete cycle of 2 years, under the stated conditions, demonstrates the technical feasibility and sustainability of the process. In accordance with current Spanish regulations, the results of biochemical analysis of the harvested biomass confirm that it is suitable for use as animal feed.

Keywords

Circular economy Flue gases Nannochloropsis gaditana Eustigmatophyceae Outdoor cultivation Raceway 

Notes

Acknowledgements

The results of this study were obtained during the project: “Aplicación del conocimiento científico y tecnológico en Andalucía para el desarrollo de un proceso de extracción de compuestos bioactivos a partir de microalgas”, grant number 14/775, financed by Corporación Tecnológica de Andalucía (CTA). This work was in collaboration with ENDESA, Novatec Ingenieros Asesores S.L., the University of Cádiz and the Instituto de la Grasa (CSIC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10811_2018_1710_MOESM1_ESM.docx (14 kb)
ESM 1 (DOCX 14.3 kb)

References

  1. AOAC International (1990) Official methods of analysis of AOAC international, 15th edn. Association of Analytical Chemist Inc., Arlington 1st revisionGoogle Scholar
  2. AOAC International (2002) Official methods of analysis of AOAC international, 17th edn. Association of Analytical Communities, Gaithersburg 1st revisionGoogle Scholar
  3. APAT-CNR-IRSA (2003) Metodi analitici per le acque, Manuali e Linee Guida, 29:575–581Google Scholar
  4. Beardall J, Raven JA (2013) Limits to photoprophic growth in dense culture: CO2 supply and light. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 91–97CrossRefGoogle Scholar
  5. Belay A (1997) Mass culture of Spirulina outdoors – the earthrise farms experience. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 131–158Google Scholar
  6. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constrains. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  7. Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  8. Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strat Global Change 18:13–25CrossRefGoogle Scholar
  9. Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial uses. Eur J Phycol 52:407–418CrossRefGoogle Scholar
  10. Camacho-Rodríguez J, Cerón-García MC, González-López CV, Fernandez-Sevilla JM, Contreras-Gómez A, Molina-Grima E (2013) A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresour Technol 144:57–66CrossRefGoogle Scholar
  11. Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  12. Davison I (1991) Environmental effect on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  13. Duarte JH, Greque de Morais E, Radmann EM, Costa JAV (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol 234:472–475CrossRefGoogle Scholar
  14. Fawley MW, Jameson I, Fawley KP (2015) The phylogeny of the genus Nannochloropsis (Monodopsidaceae, Eustigmatophyceae), with descriptions of N. australis sp. nov. and Microchloropsis gen. nov. Phycologia 54:545–552CrossRefGoogle Scholar
  15. Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496CrossRefGoogle Scholar
  16. Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ (2017) The circular economy- a new sustainability paradigm. J Clean Prod 143:757–768CrossRefGoogle Scholar
  17. Ho SS, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252CrossRefGoogle Scholar
  18. Hosseini NS, Shang H, Ross GM, Scott JA (2016) Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production. Energy Convers Manag 130:230–239CrossRefGoogle Scholar
  19. Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococuccus sp. CL-1 and Nannochloropsis oculata. J. Photochim. Photobiol. B, 95:33–39Google Scholar
  20. Ishika T, Bahri PA, Laird DW, Mohemani NR (2017) The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant and halophilic microalgae. J Appl Phycol 30:1453–1464CrossRefGoogle Scholar
  21. Jiménez C, Cossío BR, Labella D, Niell FX (2003) The feasibility of industrial production of Spirulina in Southern Spain. Aquaculture 217:179–190CrossRefGoogle Scholar
  22. Ledda C, Romero Villegas GI, Adani F, Acién Fernández FG, Molina Grima E (2015) Utilization of concentrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25CrossRefGoogle Scholar
  23. Macarthur E (2015) Circular Economy. Ellenmacarthurfoundation.org. https://www.ellenmacarthurfoundation.org/circular-economy. Accessed 23 April 2018
  24. Mendoza JL, Granados MR, de Godos I, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real-scale raceway reactors for microalgae production. Biomass Bioeng 54:267–275CrossRefGoogle Scholar
  25. Moheimani NR (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398CrossRefGoogle Scholar
  26. Moheimani NR, Borowitzka MA (2006) The longterm culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712CrossRefGoogle Scholar
  27. Mohemani NR, Borowitzka MA, Isdepsky A, Sing F (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Mohemani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284CrossRefGoogle Scholar
  28. Negoro M, Shioji N, Miyamoto K, Miura Y (1991) Growth of microalgae in high CO2 gas and effects of Sox and NOx. Appl Biochem Biotechnol 28/29:877–886CrossRefGoogle Scholar
  29. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  30. Pal D, Khozin-Goldberg I, Cohen Z, Boussiva S (2011) The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol 90:1429–1441CrossRefGoogle Scholar
  31. Regulation 575/2011 Catalog of raw materials for animal feed. European Parliament 16th June 2011. 159:25–65Google Scholar
  32. Rocha JMS, García JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242CrossRefGoogle Scholar
  33. Royal Decree 465/2003 on all undesirable substances in animal feed. Official State Journal. Madrid, 29th April 2003. 102:16485–16493Google Scholar
  34. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676CrossRefGoogle Scholar
  35. San Pedro A, González-Lopez CV, Acién FG, Molina-Grima E (2016) Outdoor pilot production Nannochloropsis gaditana: influence of culture parameters and lipid production rates in raceway ponds. Algal Res 8:205–213CrossRefGoogle Scholar
  36. Stephens E, Ross IL, King Z, Mussgnung JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgar biofuels. Nat Biotechnol 28:126–128CrossRefGoogle Scholar
  37. Sukenik A, Zamora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. Aquaculture 117:313–326CrossRefGoogle Scholar
  38. Venteris ER, McBride RC, Coleman AM, Skaggs RL, Wigmosta MS (2014) Siting algae cultivation facilities for biofuel production in the United States: trade-offs between growth rate, site constructability, water availability, and infrastructure. Environ Sci Technol 48:3559–3566CrossRefGoogle Scholar
  39. Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24:1113–1118CrossRefGoogle Scholar
  40. White RL, Ryan RA (2015) Long-term cultivation of algae in open-raceway ponds: lessons from the field. Indust Biotechnol 11:213–220CrossRefGoogle Scholar
  41. Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Alberto Rodríguez López
    • 1
    Email author return OK on get
  • Silvia Burgos Rodríguez
    • 2
  • Roberto Andrés Vallejo
    • 3
  • Palmira Guarnizo García
    • 1
  • María Dolores Macías-Sánchez
    • 4
  • Miguel Gutiérrez Díaz
    • 1
  • Rafael González Librán
    • 5
  • Francisco Javier Fernández Acero
    • 6
  1. 1.Neoalgae micro seaweed productsSemi-industrial microalgae plant, UPT-litoralCarbonerasSpain
  2. 2.Open Innovation at Innovation and Product LabMadridSpain
  3. 3.Research Project Manager of Innovation Department (ENDESA Generación, S.A.)MadridSpain
  4. 4.Department of Chemical Engineering and Food Technology, Science FacultyUniversity of CádizPuerto RealSpain
  5. 5.Novatec Ingenieros AsesoresSemi-industrial microalgae plant-UPT LitoralCarbonerasSpain
  6. 6.Microbiology laboratory, IVAGROUniversity of CádizPuerto RealSpain

Personalised recommendations