Advertisement

Interactions between the brown tide-causing microalga Aureococcus anophagefferens and the small diatom Minutocellus polymorphus under laboratory culture

  • Yanghang Chen
  • Yahui GaoEmail author
  • Changping Chen
  • Xuesong Li
  • Junrong Liang
  • Lin Sun
  • Yingyue Wang
Article

Abstract

Brown tides caused by Aureococcus anophagefferens (Pelagophyta) have broken out frequently and have caused serious ecological problems in the coastal waters of the Bohai Sea, China, since 2009. During the brown tides caused by A. anophagefferens, the small marine diatom Minutocellus polymorphus has often become dominant, co-existing with A. anophagefferens. To investigate the bloom formation mechanisms and co-existence factors involved, bi-algal culture and growth experiments with culture filtrates were performed under laboratory-controlled conditions. In our experiments, A. anophagefferens and M. polymorphus growth was allelopathically suppressed by the other species, depending on initial cell densities and growth stages; however, the species did not outcompete each other during the observed time frame. The results also suggested that the relevant allelochemicals might be a mixture containing some temperature-sensitive compounds. Growth simulation performed via the Lotka-Volterra model indicated that the initial cell density of these two species was critical in determining their growth and competition in bi-algal culture. Our results showed that a similar allelopathic effect was exerted by A. anophagefferens on M. polymorphus and vice versa. This effect could be important in allowing the observed co-existence of these two species in natural waters during brown tides.

Keywords

Allelopathy Brown tide Succession Aureococcus anophagefferens Minutocellus polymorphus 

Notes

Acknowledgements

This study was supported by the Major State Research Development Program of China (no. 2016YFA0601302) and the National Marine Public Welfare Research Project (201205031-03). The authors would like to thank Dr. Xiaotian Han of the Institute of Oceanology, Chinese Academy of Sciences, for generously providing the A. anophagefferens CCMP 1850 algal strain.

Supplementary material

10811_2018_1704_MOESM1_ESM.docx (17 kb)
ESM 1 The correlation between the OD680 and cell density of Aureococcus anophagefferens (DOCX 17 kb)

References

  1. An M, Johnson IR, Lovett JV (1996) Mathematical modelling of allelopathy. I. Phytotoxicity caused by plant residues during decomposition. Allelopath J 3:33–42Google Scholar
  2. Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the “control rod” model of plankton interaction. Deep Sea Res II 50:2895–2916CrossRefGoogle Scholar
  3. Arzul G, Seguel M, Guzman L, Denn EL (1999) Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232:285–295CrossRefGoogle Scholar
  4. Barreiro Felpeto A, Roy S, Vasconcelos VM (2018) Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos 127:85–98CrossRefGoogle Scholar
  5. Berglund H (1969) Stimulation of growth of two marine green algae by organic substances excreted by Enteromorpha linza in unialgal and axenic cultures. Physiol Plant 22:1069–1078CrossRefGoogle Scholar
  6. Bertholdsson NO (2012) Allelopathy—a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agronomy 2:284–294CrossRefGoogle Scholar
  7. Cavender-Bares KK, Rinaldo A, Chisholm SW (2001) Microbial size spectra from natural and nutrient enriched ecosystems. Limnol Oceanogr 46:778–789CrossRefGoogle Scholar
  8. Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A 78:6324–6328CrossRefGoogle Scholar
  9. Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27:125–136CrossRefGoogle Scholar
  10. Dong HP, Huang KX, Wang HL, Lu SH, Cen JY, Dong YL (2014) Understanding strategy of nitrate and urea assimilation in a Chinese strain of Aureococcus anophagefferens through RNA-seq analysis. PLoS One 9:e111069CrossRefGoogle Scholar
  11. Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125CrossRefGoogle Scholar
  12. Fistarol GO, Legrand C, Granéli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161CrossRefGoogle Scholar
  13. Gallager SM, Stoecker DK, Bricelj VM (1989) Effects of the brown tide alga on growth, feeding physiology and locomotory behavior of scallop larvae (Argopecten irradians). In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms: causes and impacts of recurrent Brown tides and other unusual blooms. Springer, Berlin, pp 511–542Google Scholar
  14. Gobler CJ, Lonsdale DJ, Boyer GL (2005) A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28:726–749CrossRefGoogle Scholar
  15. Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145CrossRefGoogle Scholar
  16. Granéli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8:94–102CrossRefGoogle Scholar
  17. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339CrossRefGoogle Scholar
  18. Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236CrossRefGoogle Scholar
  19. Hagström JA, Granéli E, Maneiro I, Barreiro A, Petermann A, Svensen C (2007) Release and degradation of amnesic shellfish poison from decaying Pseudo-nitzschia multiseries in presence of bacteria and organic matter. Harmful Algae 6:175–188CrossRefGoogle Scholar
  20. Hattenrath-Lehmann TK, Gobler CJ (2011) Allelopathic inhibition of competing phytoplankton by north American strains of the toxic dinoflagellate, Alexandrium fundyense: evidence from field experiments, laboratory experiments, and bloom events. Harmful Algae 11:106–116CrossRefGoogle Scholar
  21. Iwasa Y (1998) Suri-seibutugaku nyuumon, 2nd edn. Kyoritu Syuppan, TokyoGoogle Scholar
  22. Kang Y, Gobler CJ (2018) The brown tide algae, Aureococcus anophagefferens and Aureoumbra lagunensis (Pelagophyceae), allelopathically inhibit the growth of competing microalgae during harmful algal blooms: allelopathic effects of brown tide algae. Limnol Oceanogr 63:985–1003CrossRefGoogle Scholar
  23. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887CrossRefGoogle Scholar
  24. Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973CrossRefGoogle Scholar
  25. Kong FZ, Yu RC, Zhang QC, Yan T, Zhou MJ (2012) Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China. Chin J Oceanol Limnol 30:361–370CrossRefGoogle Scholar
  26. Kraeuter JN, Klinck JM, Powell EN, Hofmann EE, Buckner SC, Grizzle RE, Bricelj VM (2008) Effects of the fishery on the northern quahog (= hard clam, Mercenaria mercenaria L.) population in Great South Bay, New York: a modeling study. J Shellfish Res 27:653–666CrossRefGoogle Scholar
  27. Kubanek J, Hicks MK, Naar J, Villareal TA (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895CrossRefGoogle Scholar
  28. Landry MR, Ondrusek ME, Tanner SJ, Brown SL, Constantinou J, Bidigare RR, Coale KH, Fitzwater S (2000) Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar Ecol Prog Ser 201:27–42CrossRefGoogle Scholar
  29. LaRoche J, Nuzzi R, Waters R, Wyman K, Falkowski P, Wallace D (1997) Brown tide blooms in Long Island’s coastal waters linked to interannual variability in groundwater flow. Glob Chang Biol 3:397–410CrossRefGoogle Scholar
  30. Legrand C, Rengefors K, Fistarol GO, Granéli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419CrossRefGoogle Scholar
  31. Leyberth FH, Christine BS, David LC, Claudia HG, José BG, Erick NV (2016) Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea). Harmful Algae 51:1–9CrossRefGoogle Scholar
  32. Lindholm T, Virtanen T (1992) A bloom of Prymnesium parvum Carter in a small coastal inlet in Dragsfjärd, southwestern Finland. Environ Toxicol Water Qual 7:165–170CrossRefGoogle Scholar
  33. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear inequalities. SIAM J Appl Math 11:431–441CrossRefGoogle Scholar
  34. Matsuyama Y, Uchida T, Kotani Y (2000) Effect of culture filtrate of raphidophytes Heterosigma akashiwo and Chattonella antiqua on the growth of diatom Skeletonema costatum. Bull Fish Environ Inland Sea 2:57–66Google Scholar
  35. Monahan TJ, Trainor FR (1970) Stimulatory properties of filtrate from the green alga, Hormotila blennista. I Description. J Phycol 6:263–269Google Scholar
  36. Monahan TJ, Trainor FR (1971) Stimulatory properties of filtrate from green alga, Hormotila blennista. II Fractionation of filtrate. J Phycol 7:170–176Google Scholar
  37. Mukhopadhyay A, Tapaswi PK, Chattopadhyay J (1998) A delay differential equations model of plankton allelopathy. Math Biosci 149:167–189CrossRefGoogle Scholar
  38. Mulholland MR, Gobler CJ, Lee C (2002) Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnol Oceanogr 47:1094–1108CrossRefGoogle Scholar
  39. Nagasoe S, Toda S, Shimasaki Y, Oshima Y, Uchida T, Honjo T (2006) Growth inhibition of Gyrodinium instriatum (Dinophyceae) by Skeletonema costatum (Bacillariophyceae). Afr J Mar Sci 28:325–329CrossRefGoogle Scholar
  40. Nuzzi R, Waters RM (2004) Long-term perspective on the dynamics of brown tide blooms in Long Island coastal bays. Harmful Algae 3:279–293CrossRefGoogle Scholar
  41. Padilla DK, Doall MH, Gobler CJ, Hartson A, O’Boyle K (2006) Brown tide alga, Aureococcus anophagefferens, can affect growth but not survivorship of Mercenaria mercenaria larvae. Harmful Algae 5:736–748CrossRefGoogle Scholar
  42. Pratt DM (1966) Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455CrossRefGoogle Scholar
  43. Probyn TA, Pitcher GC, Pienaar RN, Nuzzi R (2001) Brown tides and mariculture in Saldanha Bay, South Africa. Mar Pollut Bull 42:405–408CrossRefGoogle Scholar
  44. Probyn TA, Bernard S, Pitcher GC, Pienaar RN (2010) Ecophysiological studies on Aureococcus anophagefferens blooms in Saldanha Bay, South Africa. Harmful Algae 9:123–133CrossRefGoogle Scholar
  45. Remmel EJ, Hambright KD (2012) Toxin-assisted micropredation: experimental evidence shows that contact micropredation rather than exotoxicity is the role of Prymnesium toxins. Ecol Lett 15:126–132CrossRefGoogle Scholar
  46. Rengefors K, Legrand C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46:1990–1997CrossRefGoogle Scholar
  47. Rice TR (1954) Biotic influence affecting population growth of planktonic algae. Fish Bull Fish Wildl Serv 54:227–254Google Scholar
  48. Rice EL (1984) Allelopathy, 2nd edn. Academic Press, LondonGoogle Scholar
  49. Rijssel M, Alderkamp AC, Nejstgaard JC, Sazhin AF, Verity PG (2007) Haemolytic activity of live Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 83:189–200CrossRefGoogle Scholar
  50. Roy S (2009) The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor Popul Biol 75:68–75CrossRefGoogle Scholar
  51. Sengco MR, Hagström JA, Granéli E, Anderson DM, Kuuppo P (2005) Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4:261–274CrossRefGoogle Scholar
  52. Smayda TJ, Villareal TA (1989) An extraordinary, noxious brown-tide in Narragansett Bay. 1. The organism and its dynamics. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 129–132Google Scholar
  53. Streibig JC, Kudsk P, Jensen JE (1998) A general joint action model for herbicide mixtures. Pestic Sci 53:21–28CrossRefGoogle Scholar
  54. Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena , Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  55. Tapaswi PK, Mukhopadhyay A (1999) Effects of environmental fluctuation on plankton allelopathy. J Math Biol 39:39–58CrossRefGoogle Scholar
  56. Tarutani K, Nagasaki K, Yamaguchi M (2000) Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl Environ Microbiol 66:4916–4920CrossRefGoogle Scholar
  57. Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: An allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58CrossRefGoogle Scholar
  58. Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543CrossRefGoogle Scholar
  59. Toledo Marante FJ, García CA, Estévez RF, Quintana AJ, Bermejo BJ (2003) Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29:2049–2071CrossRefGoogle Scholar
  60. Tracey GA (1988) Feeding reduction, reproductive failure, and mortality in Mytilus edulis during the 1985 “brown tide” in Narragansett Bay, Rhode Island. Mar Ecol Prog Ser 50:73–81CrossRefGoogle Scholar
  61. Uchida T (1995) A red-tide dinoflagellate, Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Mar Ecol Prog Ser 118:301–303CrossRefGoogle Scholar
  62. Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exp Mar Biol Ecol 241:285–299CrossRefGoogle Scholar
  63. Wang Y, Yu Z, Song X, Zhang S (2006) Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J Sea Res 56:17–26CrossRefGoogle Scholar
  64. Yu J (2014) The efficient technology of detecting plankton diversity and its application in the study of Brown tide in Bohai. Dissertation, Ocean University of ChinaGoogle Scholar
  65. Żak A, Musiewicz K, Kosakowska A (2012) Allelopathic activity of the Baltic cyanobacteria against microalgae. Estuar Coast Shelf Sci 112:4–10CrossRefGoogle Scholar
  66. Zhang DP, Wu BG (2000) Studies on responses of red tide algae on temperature, nitrogen, phosphorus and the algal interactions. J Jinan Univ (Nat Sci) 21:82–87Google Scholar
  67. Zhang QC, Qiu LM, Yu RC, Kong FZ, Wang YF, Yan T, Gobler CJ, Zhou MJ (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Yanghang Chen
    • 1
    • 2
  • Yahui Gao
    • 2
    • 3
    • 4
    Email author
  • Changping Chen
    • 2
    • 4
  • Xuesong Li
    • 2
  • Junrong Liang
    • 2
    • 4
  • Lin Sun
    • 3
  • Yingyue Wang
    • 2
  1. 1.Laboratory of Marine Biology and Ecology, Third Institute of OceanographyState Oceanic AdministrationXiamenChina
  2. 2.School of Life SciencesXiamen UniversityXiamenChina
  3. 3.State Key Laboratory of Marine Environmental ScienceXiamen UniversityXiamenChina
  4. 4.Key Laboratory of the Ministry of Education for Coastal and Wetland EcosystemsXiamen UniversityXiamenChina

Personalised recommendations