Macroalgal responses to coastal urbanization: relative abundance of indicator species

  • Edson Régis Tavares Pessoa Pinho de VasconcelosEmail author
  • Juliane Bernardi Vasconcelos
  • Thiago Nogueira de Vasconcelos Reis
  • Adilma de Lourdes Montenegro Cocentino
  • Arsenio José Areces Mallea
  • Gustavo M. Martins
  • Ana Isabel Neto
  • Mutue Toyota Fujii


This study aimed to evaluate and compare the intertidal macroalgae community from reef structures subject to different urbanization degrees. Samplings were made in 11 beaches from the Pernambuco coast, northeastern Brazil. The sites were classified according to the level of urbanization into three classes of increasing urbanization pressure: non urbanized (NU), in urbanization process (UP), and consolidated urbanization (UC). Macroalgae were identified in situ non-destructively. A total of 53 taxa were identified, 41 of these were macroalgae. Significant differences were observed in the composition of macroalgae according to the urbanization levels, with Palisada perforata, Gelidiella acerosa, and Caulerpa spp. dominating NU and UP sites, whereas Chondracanthus acicularis, Bryopsis sp., and Ulva spp. dominated UC sites. This work shows that urbanization can have a strong effect on the structure of rocky intertidal macroalgal assemblages and highlights some macroalgae species that can be used as bioindicators for assessing the impact of urbanization on coastal shores.


Coast occupation Bioindicators Phytobenthos Coastal reefs 



The first author thanks the Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) for the PhD Scholarship and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the Science without Frontier Scholarship. MTF thanks CNPq for the Productivity Fellowship (Proc. 303915/2013-7). The authors thank Souza-Filho JS, Neumann-Leitão S, Feitosa FA, Rosa-Filho JS for helpful advice and comments.

Funding information

This work was supported by research grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Proc. 484647/2012-1).


  1. Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236Google Scholar
  2. Airoldi L, Beck WM (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol 45:345–405Google Scholar
  3. Ambrose RF (2002) Transects, quadrats, and other sampling units. In: Murray SN, Ambrose RF, Dethier MN (eds) Methods for performing monitoring, impact, and ecological studies on rocky shores. Coastal Research Center, Marine Science Institute, University of California, Santa Barbara, pp 98–122Google Scholar
  4. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for Primer. Primer-E, PlymouthGoogle Scholar
  5. Areces A (2001) La ficoflora intermareal como bioindicadora de calidad ambiental. Estudio de caso: El litoral habanero. In: Alveal K, Antezana T (eds) Sustentabilidad de la biodiversidade. Um problema actual, bases científico-técnicas, teorizaciones y perspectivas. Trama Impresores S.A, Concepción, pp 569–589Google Scholar
  6. Balata D, Piazzi L, Rindi F (2011) Testing a new classification of morphological functional groups of marine macroalgae for the detection of responses to stress. Mar Biol 158:2459–2469CrossRefGoogle Scholar
  7. Benedetti-Cecchi L (2001) Variability in abundance of algae and invertebrates at different spatial scales on rocky sea shores. Mar Ecol Prog Ser 215:79–92CrossRefGoogle Scholar
  8. Benedetti-Cecchi L, Pannacciulli F, Bulleri F, Moschella PS, Airoldi L, Relini G, Cinelli F (2001) Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Mar Ecol Prog Ser 214:137–150CrossRefGoogle Scholar
  9. Borowitzka MA (1972) Intertidal algal species diversity and the effects of pollution. Aust J Mar Freshwat Res 25:73–84CrossRefGoogle Scholar
  10. Branner JC (1904) The stone reefs of Brazil, their geological and geographical relations, with a chapter on the coral reefs, vol 54. Bulletin of the Museum of Comparative Zoology, Cambridge, pp 1–285Google Scholar
  11. Cabrera R, Moreira A, Primelles J, Suárez AM (2005) Variación de la biomasa de Chondrophycus papillosus (C. Agardh) Garbary et Harper (Ceramiales: Rhodophyta) y su epifitismo en la bahía de Nuevitas. Cuba Rev Invest Mar 26:15–20Google Scholar
  12. Castro CB, Pires DO (2001) Brazilian coral reefs: what we know and what is still missing. Bull Mar Sci 69(2):357–371Google Scholar
  13. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial (Plymouth routines in multivariate ecological research). Primer-E Ltd, PlymouthGoogle Scholar
  14. Clarke KR, Warwick RM (2005) Primer-6 computer program. Natural Environment Research Council, PlymouthGoogle Scholar
  15. Coelho SM, Rijstenbil JW, Brown MT (2000) Impacts of anthropogenic stresses on the early development stages of seaweed. J Aquat Ecosyst Stress Recov 7:317–333CrossRefGoogle Scholar
  16. Connell SD, Russell BD, Turner DJ, Shepherd SA, Kildea T, Miller D, Airoldi L, Cheshire A (2008) Recovering a lost baseline: missing kelp forests from a metropolitan coast. Mar Ecol Prog Ser 360:63–72CrossRefGoogle Scholar
  17. CPRH (2003) Agência estadual de meio ambiente e recursos hídricos. Diagnóstico Sócioambiental do Litoral Sul de Pernambuco Avaiable at: http://wwwcprhpegovbr. Acessed 26 June 2015
  18. Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211CrossRefGoogle Scholar
  19. Dominguez JML, Bittencourt ACSP, Leão ZMAN, Azevedo AEG (1990) Geologia do quaternário costeiro do Estado de Pernambuco. Rev Bras Geociênc 20:208–215CrossRefGoogle Scholar
  20. Fonseca AC, Villaça R, Knoppers B (2012) Reef flat community structure of Atol das Rocas, Northeast Brazil and Southwest Atlantic. J Mar Biol 2012:1–10CrossRefGoogle Scholar
  21. Goatley CH, Bellwood DR (2013) Ecological consequences of sediment on high-energy coral reefs. PLoS One 8(10):e77737CrossRefGoogle Scholar
  22. Google Earth® (2013) Google Inc.Google Scholar
  23. Halpern BS, Longo C, Hardy D, McLeod KL, Samhouri JF, Katona SK et al (2012) An index to assess the health and benefits of the global ocean. Nature 488:615–620CrossRefGoogle Scholar
  24. Horta PA, Amancio E, Coimbra CS, Oliveira EC (2001) Considerações sobre a distribuição e origem da flora de macroalgas marinhas brasileiras. Hoehnea 28:243–265Google Scholar
  25. IBGE (2010) Instituto Brasileiro de Geografia e Estatística Censo Demográfico. Acessed 26 June 2015Google Scholar
  26. ITEP (2012) Instituto de Tecnologia de Pernambuco. Relatório de impacto ambiental. Recuperação da orla marítima. Municípios de Jaboatão dos Guararapes, Recife, Olinda e Paulista (Pernambuco). Instituto de Tecnologia de Pernambuco, Recife, pp 1–98Google Scholar
  27. Johnston EL, Roberts DA (2009) Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environ Pollut 157:1745–1752CrossRefGoogle Scholar
  28. Juanes JA, Guinda X, Puente A, Revilla JA (2008) Macroalgae, a suitable indicator of the ecological status of coastal rocky communities in the NE Atlantic. Ecol Indic 8:351–359CrossRefGoogle Scholar
  29. Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica, Mexico, pp 1–479Google Scholar
  30. Krause-Jensen D, Sagert S, Schubert H, Bostrom C (2008) Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecol Indic 8:515–529CrossRefGoogle Scholar
  31. Laborel JL (1969) Madreporaires et hidrocoralliaires recifaux dês cotes brésiliennes. Systematíque, ecologie, repartition verticale et geographic. Ann Inst Oceanogr Paris 47:171–226Google Scholar
  32. Lapointe BE (1989) Macroalgal production and nutrient relations in oligotrophic areas of Florida bay. Bull Mar Sci 44:312–323Google Scholar
  33. Loffler Z, Hoey AS (2018) Canopy-forming macroalgal beds (Sargassum) on coral reefs are resilient to physical disturbance. J Ecol 106:1156–1164CrossRefGoogle Scholar
  34. Mangialajo L, Chiantore M, Cattaneo-Vietti R (2008) Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar Ecol Prog Ser 358:63–74CrossRefGoogle Scholar
  35. Manso VAV, Coutinho PN, Guerra NC, Soares CFA (2006) Pernambuco. In: Muehe D (ed) Erosão e Progradação no Litoral Brasileiro. Ministério do Meio Ambiente, Brasília, pp 179–196Google Scholar
  36. Martins CD, Arantes N, Faveri C, Batista MB, Oliveira EC, Pagliosa PR, Fonseca AL, Nunes JMC, Chow F, Pereira SB, Horta PA (2012) The impact of coastal urbanization on the structure of phytobenthic communities in southern Brazil. Mar Pollut Bull 64:772–778CrossRefGoogle Scholar
  37. Moreira AR, Armenteros M, Gómez M, Leon AR, Cabrera R, Castellanos ME, Munoz A, Suarez AM (2006) Variation of macroalgae biomass in Cienfuegos bay, Cuba. Rev Investig Mar 27:3–12Google Scholar
  38. Orfanidis S, Panayotidis P, Stamatis N (2003) An insight to the ecological evaluation index (EEI). Ecol Indic 3:27–33CrossRefGoogle Scholar
  39. Orlandi L, Bentivogli F, Carlino P, Calizza E, Rossi D, Costantini ML, Rossi L (2014) δ15 N variation in Ulva lactuca as a proxy for anthropogenic nitrogen inputs in coastal areas of gulf of Gaeta (Mediterranean Sea). Mar Pollut Bull 84:76–82CrossRefGoogle Scholar
  40. Ortega JLG (2000) Algas. In: Espino GL, Pulido J, Pérez JLC (eds) Organismos indicadores de la calidad del água y de la contaminación (Bioindicadores). Playa y Valdés, Mexico, pp 109–193Google Scholar
  41. Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49:667–685CrossRefGoogle Scholar
  42. Peckol P, Rivers JS (1996) Contribution by macroalgal mats to primary production of a shallow embayment under high and low nitrogen-loading rates. Estuar Coast Shelf Sci 43:311–325CrossRefGoogle Scholar
  43. Pereira SMB, Carvalho MFO, Angeiras JA, Pedrosa MEB, Oliveira NMB, et al (2002) Algas marinhas bentônicas do estado de Pernambuco. In: Tabarelli M, Silva JMC (ed) Diagnóstico da biodiversidade de Pernambuco. Secretaria de Ciência, Tecnologia e Meio Ambiente, Massangana, Recife, 1, p 97–124Google Scholar
  44. Pereira SMB, Oliveira-Carvalho MF, Burgos DC, Araújo EL (2008) Caracterização estrutural das macroalgas de ambiente recifal da praia de Enseada dos Corais. In: Congresso Brasileiro de Ficologia, XI, Itajaí-SC. Anais de trabalho completos. Série Livros do Museu Nacional. Rio de Janeiro, p 231–242Google Scholar
  45. Portugal AB, Carvalho FL, de Macedo Carneiro PB, Rossi S, de Oliveira Soares M (2016) Increased anthropogenic pressure decreases species richness in tropical intertidal reefs. Mar Environ Res 120:44–54CrossRefGoogle Scholar
  46. Projeto Orla (2002) Projeto Orla: fundamentos para gestão integrada. Brasília: MMA/SQA; Brasília: MP/SPU, p 78Google Scholar
  47. Santelices B, Doty MS (1989) A review of Gracilaria farming. Aquaculture 78:95–133CrossRefGoogle Scholar
  48. Santos GS, Lira SMA, Schwamborn R (2015) Análise das comunidades macrobentônicos sésseis, com ênfase na interação entre o cnidário Zoanthus sociatus (Ellis, 1768) e macroalgas, no topo de um recife de águas rasas do nordeste do Brasil. Trop Oceanogr 43:1–8CrossRefGoogle Scholar
  49. Scherner F, Horta PA, Oliveira EC, Simonassi JC, Hall-Spencer JM, Chow F, Nunes JM, Prereira SM (2013) Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76:106–115CrossRefGoogle Scholar
  50. Schiel DR (2006) Rivets or bolts? When single species count in the function of temperate rocky reef communities. J Exp Mar Biol Ecol 338:233–252CrossRefGoogle Scholar
  51. Shanmugam P, Neelamani S, Ahn YH, Philip L, Hong GH (2007) Assessment of the levels of coastal marine pollution of Chennai city, southern India. Water Resour Manag 21:1187–1206CrossRefGoogle Scholar
  52. SNIS (2011) Sistema Nacional de Informações sobre Saneamento: Diagnóstico dos serviços de água e esgotos. Ministério das cidades SNSA, Brasília, p 432Google Scholar
  53. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583CrossRefGoogle Scholar
  54. Steneck RS, Dethier MN (1994) A functional group approach to the structure of algal dominated communities. Oikos 69:476–498CrossRefGoogle Scholar
  55. Tait LW, Schiel DR (2011) Legacy effects of canopy disturbance on ecosystem functioning in macroalgal assemblages. PLoS One 6:e26986CrossRefGoogle Scholar
  56. Thibaut T, Pinedo S, Torras X, Ballesteros E (2005) Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Albéres coast (France, North-Western Mediterranean). Mar Pollut Bull 50:1472–1489CrossRefGoogle Scholar
  57. Tsai C, Chang J, Sheu F, Shyu Y, Yu A, Wong S, Dai C, Lee T (2005) Seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia and from a highly eutrophic reef in southern Taiwan: temperature limitation and nutrient availability. J Exp Mar Biol Ecol 315:49–69CrossRefGoogle Scholar
  58. Turra A, Croquer A, Carranza A, Mansilla A, Areces AJ, Werlinger C et al (2013) Global environmental changes: setting priorities for Latin American coastal habitats. Glob Chang Biol 19:1965–1969CrossRefGoogle Scholar
  59. Vasconcelos ERTPP, Reis TNV, Guimarães-Barros NC, Bernardi J, Areces-Mallea AJ, Cocentino ALM, Fujii MT (2013) Padrão espacial da comunidade de macroalgas de mesolitoral em ambiente recifal do nordeste brasileiro. Trop Oceanogr 41:84–92Google Scholar
  60. Villaça R, Fonseca AC, Jensen VK, Knoppers B (2010) Species composition and distribution of macroalgae on Atol das Rocas, Brazil, SW Atlantic. Bot Mar 53:113–122CrossRefGoogle Scholar
  61. Worm B, Lotze HK, Boström C, Engkvist R, Labanauskas V, Sommer U (1999) Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Mar Ecol Prog Ser 185:309–314CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Edson Régis Tavares Pessoa Pinho de Vasconcelos
    • 1
    Email author
  • Juliane Bernardi Vasconcelos
    • 1
  • Thiago Nogueira de Vasconcelos Reis
    • 1
  • Adilma de Lourdes Montenegro Cocentino
    • 1
  • Arsenio José Areces Mallea
    • 2
  • Gustavo M. Martins
    • 3
  • Ana Isabel Neto
    • 3
  • Mutue Toyota Fujii
    • 4
  1. 1.Departamento de OceanografiaUniversidade Federal de PernambucoRecifeBrazil
  2. 2.Instituto de OceanologiaUniversidad de La HabanaHabanaCuba
  3. 3.CE3C-Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
  4. 4.Núcleo de Pesquisa em FicologiaInstituto de BotânicaSão PauloBrazil

Personalised recommendations