Journal of Applied Phycology

, Volume 31, Issue 2, pp 1271–1284 | Cite as

Life history, growth, and pigment content of two morphological variants of Hypnea pseudomusciformis (Gigartinales, Rhodophyta)

  • Fábio NauerEmail author
  • Lígia Ayres-Ostrock
  • Ana Maria Amorim
  • Janaína Pires Santos
  • Fungyi Chow
  • Estela M. Plastino
  • Mariana C. Oliveira


Specimens previously described as Hypnea musciformis and Hypnea nigrescens in Brazil were shown to be morphological variants of a new species named Hypnea pseudomusciformis, which has been used for the production of carrageenan on the coast of Brazil. In this study, individuals of both morphological variants were collected in the field and cultivated in unialgal culture conditions. The life history of both variants was completed in 118 days. Tetrasporophytes produced tetrasporangia in 40 days. Released tetraspores germinated and 15 days later, an erect cylindrical axis developed from basal disk. At the age of 35 days, spermatangial conceptacles could be observed, and after 3 days of co-culture of male and female gametophytes, cystocarps could be observed, indicating the occurrence of fertilization. Finally, carpospores were released from cystocarps after 10 days, germinated and originated new tetrasporophytes in 15 days. When cultured, the morphological differences between the “musciformis” and “nigrescens” variants were attenuated and the life histories were the same. Furthermore, both morphological variants had different growth rates, but similar pigment content. These results corroborate that, for Brazil, specimens previously identified as H. musciformis and H. nigrescens are variants of H. pseudomusciformis, a highly plastic species.


Rhodophyta Hypnea Culture Growth rates Physiological plasticity Pigments 



Thanks to all members from Marine Algae Laboratories (LAM) from University of São Paulo, Brazil, and to Rosário Petti and William Oliveira for technical support. Special thanks to Dr. Nair S. Yokoya, from São Paulo Institute of Botany for the help in the early stages of culture.

Funding information

We are grateful for the support from FAPESP (Biota 2013/11833-3) and CNPq (301491/2013-5; 300148/ 93-3). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

10811_2018_1630_MOESM1_ESM.docx (17 kb)
Table 1S Pigments content for all life phases for the two morphological variants of H. pseudomusciformis. (DOCX 16 kb)


  1. Araújo FO, Ursi S, Plastino EM (2013) Intraspecific variant in Gracilaria caudata (Gracilariales, Rhodophyta): growth, pigment content, and photosynthesis. J Appl Phycol 26:849–858CrossRefGoogle Scholar
  2. Avila M, Piel MI, Caceres JH, Alveal K (2010) Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. J Appl Phycol 23:529–536CrossRefGoogle Scholar
  3. Barufi JB, Oliveira EC, Plastino EM, Oliveira MC (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Rhodophyta: Gracilariales) in culture. Scientia Mar 74:297–303CrossRefGoogle Scholar
  4. Barufi JB, Mata MT, Oliveira MC, Figueroa FL (2012) Nitrate reduces the negative effect of UV radiation on photosynthesis and pigmentation in Gracilaria tenuistipitata (Rhodophyta): the photoprotection role of mycosporine-like amino acids. Phycologia 51:636–648CrossRefGoogle Scholar
  5. Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Mar Freshw Res 36:785–792CrossRefGoogle Scholar
  6. Berchez FAS, Oliveira-Filho EC (1990) Maricultural essays with the carragenophyte Hypnea musciformis in São Paulo, Brazil. In: Oliveira ECF, Kautsky N (eds) Cultivation of seaweeds in Latin América. Universidade de São Paulo, São Paulo, pp 89–94Google Scholar
  7. Berchez FAS, Pereira RTL, Kamiya NF (1993) Culture of Hypnea musciformis (Rhodophyta, Gigartinales) on artificial substrates attached to linear ropes. Hydrobiologia 260/261:415–420Google Scholar
  8. Bravin IC, Yoneshigue-Valentin Y (2002) The influence of environmental factors on in vitro growth of Hypnea musciformis (Wulfen) Lamouroux (Rhodophyta). Rev Bras Bot 25:469–474CrossRefGoogle Scholar
  9. Caires TA, Costa IO, Matos MRB, Lyra GM, Nunes JMC (2013a) Phenological studies in populations of Hypnea musciformis (Rhodophyta: Gigartinales) in a tropical region of Brazil. Braz J Bot 36:135–140CrossRefGoogle Scholar
  10. Carnicas E, Jiménez C, Niell FX (1999) Effects of changes of irradiance on the pigment composition of Gracilaria tenuistipitata var. liui Zhang et Xia. J Photochem Photobiol B 50:149–158CrossRefGoogle Scholar
  11. Cecere E, Petrocelli A, Verlaque M (2011) Vegetative reproduction by multicellular propagules in Rhodophyta: an overview. Mar Ecol 32:419–437CrossRefGoogle Scholar
  12. Destombe C, Godin J, Nocher M, Richerd S, Valero M (1993) Differences in response between haploid and diploid isomorphic phases of Gracilaria verrucosa (Rhodophyta: Gigartinales) exposed to artificial environmental conditions. Hydrobiologia 260/261:131–137Google Scholar
  13. Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xantophyll regulation in Corallina elongata. Eur J Phycol 44:221–230CrossRefGoogle Scholar
  14. Faccini AL, Berchez F (2000) Management of natural beds and standing stock evaluation of Hypnea musciformis (Gigartinales, Rhodophyta) in south-eastern Brazil. J Appl Phycol 12:101–103CrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  16. Fernandes DRP, Caetano VS, Tenório MMB, Reinert F, Yoneshigue-Valentin Y (2012) Characterization of the photosynthetic conditions and pigment profiles of the colour strains of Hypnea musciformis from field collected and in vitro cultured samples. Braz J Pharmacog 22:753–759CrossRefGoogle Scholar
  17. Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores-Moya A, Altamirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90CrossRefGoogle Scholar
  18. Figueroa FL, Bueno A, Korbee N, Santos R, Mata L, Schuenhoff A (2008) Accumulation of mycosporine-like amino acids in Asparagopsis armata grown in tanks with fishpond effluents of gilthead sea bream Asparus aurata. J World Aquacult Soc 39:692–699CrossRefGoogle Scholar
  19. García-Sánchez MJ, Fernández JA, Niell FX (1993) Biochemical and physiological responses of Gracilaria tenuistipitata under two different nitrogen treatments. Physiol Plantarum 88:631–637CrossRefGoogle Scholar
  20. Gupta V, Baghel RS, Kumar M, Kumari P, Mantri VA, Reddy CRK, Jha B (2011) Growth and agarose characteristics of isomorphic gametophyte (male and female) and sporophyte of Gracilaria dura and their marker assisted selection. Aquaculture 318:389–396CrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hughe JS, Otto SP (1999) Ecology and the evolution of biphasic life cycles. Am Nat 154:306–320CrossRefGoogle Scholar
  23. Jesus PB (2016) Estudos biossistemáticos em espécies do gênero Hypnea J.V. Lamouroux (Gigartinales, Rhodophyta). Doctoral Thesis. Feira de Santana. 221 pGoogle Scholar
  24. Jesus PB, Schnadelbach AS, Nunes JMC (2013) O gênero Hypnea (Cystocloniaceae, Rhodophyta) no litoral do estado da Bahia, Brasil. Sitientibus Sér Ci Biol 13:1–21CrossRefGoogle Scholar
  25. Kong CSL, Ang PO Jr (2004) Seasonal occurrence and reproduction of Hypnea charoides (Rhodophyta) in Tung Ping Chau, N.T., Hong Kong SAR, China. Hydrobiologia 512:63–78CrossRefGoogle Scholar
  26. Kursar TA, van der Meer JP, Alberte RS (1983) Lightharvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analysis of pigment mutations. Plant Physiol 73:353–360CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lamouroux JV (1813) Essai sur les genres de la famille des Thalassiophytes non articulées. Ann Mus d'Hist Nat Paris 20:21–47 115–139, 267–293, pls 7–13Google Scholar
  28. Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protocols Food Analyt Chem F4(3):1–F4.3.8Google Scholar
  29. Martins AP, Chow F, Yokoya NS (2009) Ensaio in vitro da enzima nitrato redutase e efeito da disponibilidade de nitrato e fosfato em variantes pigmentares de Hypnea musciformis (Wulfen) J. V. Lamour. (Gigartinales, Rhodophyta). Rev Braz Bot 32:635–645CrossRefGoogle Scholar
  30. Masuda M, Yamagishi Y, Chiang YM, Lewmanomont K, Xia B (1997) Overview of Hypnea (Rhodophyta, Hypneaceae). In: Abbott IA (ed) Taxonomy of economic seaweeds, vol 6. California Sea Grant College System, La Jolla, pp 127–133Google Scholar
  31. Mathieson AC (1989) Phenological patterns of New England seaweeds. Bot Mar 32:419–438CrossRefGoogle Scholar
  32. Nauer F, Cassano V, Oliveira MC (2014) Hypnea species (Gigartinales, Rhodophyta) from the southeastern coast of Brazil based on molecular studies complemented with morphological analyses, including descriptions of Hypnea edeniana sp. nov. and H. flava sp. nov. Eur J Phycol 49:550–575CrossRefGoogle Scholar
  33. Nauer F, Cassano V, Oliveira MC (2015) Description of Hypnea pseudomusciformis sp. nov., a new species based on molecular and morphological analyses, in the context of the H. musciformis complex (Gigartinales, Rhodophyta). J Appl Phycol 27:2405–2417CrossRefGoogle Scholar
  34. Nauer F, Amorim, AM, Santos JP, Chow F and Oliveira MC (2018) Physiological plasticity in morphological variations of red seaweed Hypnea pseudomusciformis (Gigartinales, Rhodophyta) uncovered by molecular, antioxidant capacity and pigments content data. Braz J Bot 41: 567–577Google Scholar
  35. Ogata E, Matsui T, Nakamura H (1972) The life cycle of Gracilaria verrucosa (Rhodophyceae, Gigartinales) in vitro. Phycologia 11:75–85CrossRefGoogle Scholar
  36. Oliveira EC (1998) The seaweed resources of Brazil. In: Critchley AT, Ohno M (eds) Seaweed resources of the world. Japan International Cooperation Agency, Yokosuka, pp 366–371Google Scholar
  37. Plastino EM, Guimarães M (2001) Diversidad intraespecifica. In: Alveal KV, Antezana TJ (eds) Sustentabilidad de la Biodiversidad. Universidad de Concepción, Concepción, pp 19–27Google Scholar
  38. Plastino EM, Ursi S, Fujii MT (2004) Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol Res 52:45–52CrossRefGoogle Scholar
  39. Rao RK (1970) Studies on growth cycle and phycocolloid content in Hypnea musciformis (Wulf.) Lamour. Bot Mar 13:163–165Google Scholar
  40. Reis RP, Yoneshigue-Valentin Y (1998) Variação espaço-temporal de populações de Hypnea musciformis (Rhodophyta, Gigartinales) na Baía de Sepetiba e Armação dos Búzios, Rio de Janeiro, Brasil. Acta Bot Bras 12:465–483CrossRefGoogle Scholar
  41. Reis RP, Yoneshigue-Valentin Y (2000) Phenology of Hypnea musciformis (Wulfen) Lamouroux (Rhodophyta, Gigartinales) in three populations from Rio de Janeiro State, Brazil. Bot Mar 43:299–304CrossRefGoogle Scholar
  42. Reis RP, Leal MCR, Yoneshigue-Valentin Y, Belluco F (2003) Efeito de fatores bióticos no crescimento de Hypnea musciformis (Rhodophyta - Gigartinales). Acta Bot Bras 17:279–286CrossRefGoogle Scholar
  43. Roleda MY, Halnet D, Kräbs G, Wiencke C (2004a) Morphology, growth, photosynthesis and pigments in Laminaria ochroleuca (Laminariales, Phaeophyta) under ultraviolet radiation. Phycologia 43:603–613CrossRefGoogle Scholar
  44. Roleda MY, van der Poll WH, Halnet D, Wiencke C (2004b) PAR and UVBR effects on photosynthesis, viability, growth and DNA in different life stages of two coexisting Gigartinales: implications for recruitment and zonation pattern. Mar Ecol Prog Ser 281:37–50CrossRefGoogle Scholar
  45. Sagert S, Forster RM, Feuerpfeil P, Schubert H (1997) Daily course of photosynthesis and photoinhibition in Chondrus crispus (Rhodophyta) from different shore levels. Eur J Phycol 32:363–371CrossRefGoogle Scholar
  46. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans Roy Soc B 360:1879–1888CrossRefGoogle Scholar
  47. Schenkman RPF (1986) Cultura de Hypnea (Rhodophyta) in vitro como subsídio para estudos morfológicos, reprodutivos e taxonômicos. Doctoral Thesis. Instituto de Biociências, Universidade de São Paulo. 81 pp.Google Scholar
  48. Sinhá RP, Singh N, Kumar A, Kumar HD, Häder M, Häder DP (1996) Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. J Photochem Photobiol B 32:107–113CrossRefGoogle Scholar
  49. Swofford DL (2002) PAUP: phylogenetic analysis using parismony, version 4.08a. Computer program distributed by the Illinois Natural History Survey, Champaign, IllGoogle Scholar
  50. Talarico L, Maranzana G (2000) Light and adaptative responses in red macroalgae: an overview. J Photochem Photobiol B 56:1–11CrossRefPubMedGoogle Scholar
  51. Ursi S, Plastino EM (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria sp. (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev Bras Bot 4:585–592Google Scholar
  52. Wallner M, Lobo S, Boccanera N, Silva EM (1992) Biomass, carrageenan yield and reproductive state of Hypnea musciformis (Rhodophyta: Gigartinales) under natural and experimental cultivated conditions. Aquacult Fish Manag 23:443–451Google Scholar
  53. Wanderley A (2009) [Effect of nitrate availability on growth, nitrate reductase activity, chemical composition and nitrate and phosphate uptake in Gracilariopsis tenuifrons (Gracilariales, Rhodophyta)]. Masters Dissertation.. Institute of Bioscience, University of São Paulo. São Paulo. 140 pp [In Portuguese]Google Scholar
  54. Yokoya NS, Plastino EM, Artel R (2003) Physiological responses and pigment characterization of two colour strains of the carrageenophyte Hypnea musciformis (Rhodophyta). In: ARO C, Anderson RJ, Vreeland VJ, Davison IR (eds) Proceedings of the 17th International Seaweed Symposium. Oxford University Press, New York, pp 425–433Google Scholar
  55. Yokoya NS, Necchi O, Martins AP, Gonzalez SF, Plastino EM (2007) Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J Appl Phycol 19:197–205CrossRefGoogle Scholar
  56. Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Botany, Biosciences InstituteSão Paulo UniversitySão PauloBrazil

Personalised recommendations