Journal of Applied Phycology

, Volume 31, Issue 2, pp 1383–1390 | Cite as

Application of imaging Raman spectroscopy to study the distribution of Kappa carrageenan in the seaweed Kappaphycus alvarezii

  • Anggara Mahardika
  • A. B. Susanto
  • Rini Pramesti
  • Hiroko Matsuyoshi
  • Bibin Bintang AndrianaEmail author
  • Yusuke Matsuda
  • Hidetoshi Sato


Raman imaging spectroscopy has been applied to analyze carrageenan production in the red alga, Kappaphycus alvarezii. The Raman spectra of the sample suggested that the thallus of K. alvarezii mainly consists of cellulose and carrageenan. A partial least square regression prediction model for carrageenan semi-quantitative analysis was built with a simple two-material system and applied to visualize the three-dimensional carrageenan distribution in the algal body. The images clearly depicted the carrageenan distribution in carrageenan-rich and carrageenan-poor samples. Images stained for carrageenan with methylene blue showed results similar to those from analysis with Raman imaging spectroscopy. Our results suggest that Raman imaging spectroscopy, which is nondestructive and label free, is an accurate and useful method for detecting carrageenan distribution in algae.


Kappaphycus alvarezii Carrageenan Raman spectroscopy Chemometrics 


  1. Adharini RI, Suyono EA, Suadi JAD, Setyawan AR (2018) A comparison of nutritional values of Kappaphycus alvarezii, Kappaphycus striatum, and Kappaphycus spinosum from the farming sites in Gorontalo Province, Sulawesi, Indonesia. J Appl Phycol.
  2. Azevedo G, Hilliou L, Bernardo G, Pinto IS, Adams RW, Nilsson M, Villanueva RD (2013) Tailoring kappa/iota-hybrid carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. J Food Hydrocol 31:94–102CrossRefGoogle Scholar
  3. Bixler HJ (1996) Recent developments in manufacturing and marketing carrageenan. Hydrobiologia 326/327:35–57Google Scholar
  4. Campo VL, Kawano DF, da Silva DB Jr, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis– a review. Carbohydr Polym 77:167–180CrossRefGoogle Scholar
  5. Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 14(3):42CrossRefGoogle Scholar
  6. Dewi EN, Darmanto YS, Ambariyanto (2012) Characterization and quality of semi refined carrageenan (src) products from different coastal waters based on Fourier transform infrared technique. J Coast Dev 16:25–31Google Scholar
  7. Freile-Pelegrín Y, Robledo D, Azamar JA (2006) Carrageenan of Eucheuma isiforme (Solieriaceae, Rhodophyta) from Yucatán, Mexico. I. Effect of extraction conditions. Bot Mar 49:65–71Google Scholar
  8. Henriques R, Griffiths C, Rego EH, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331CrossRefGoogle Scholar
  9. Hurtado AQ, Gerung GS, Yasir S, Critchley AT (2014) Cultivation of tropical red seaweeds in the BIMP-EAGA region. J Appl Phycol 26:707–718CrossRefGoogle Scholar
  10. Hurtado AQ, Neish IC, Critchley AT (2015) Developments in production technology of Kappaphycus in the Philippines: more than four decades of farming. J Appl Phycol 27:1945–1961CrossRefGoogle Scholar
  11. Indriatmoko H, Limantaraa L, Brotosudarmo HTP (2015) Composition of photosynthetic pigments in a red alga Kappaphycus alvarezi cultivated in different depths. Procedia Chemistry 14:193–201CrossRefGoogle Scholar
  12. Ishigaki M, Meksiarun P, Kitahama Y, Zhang L, Hashimoto H, Genkawa T, Ozaki Y (2017) Unveiling the aggregation of lycopene in vitro and in vivo: UV−Vis, resonance Raman, and Raman imaging studies. J Phys Chem B 121:8046–8057CrossRefGoogle Scholar
  13. Lechat H, Amat H, Mazoyer J, Gallant DJ, Buléon A, Lahaye M (1997) Cell wall composition of the carrageenophyte Kappaphycus alvarezii (Gigartinales, Rhodophyta) partitioned by wet sieving. J Appl Phycol 9:565–572Google Scholar
  14. Lechat H, Amat M, Mazoyer J (2000) Structure and distribution of glucomannan and sulfated glucan in the walls of the red alga Kappaphycus Alvarezii (Gigartinales, Rhodophyta). J Phycol 36:891–902Google Scholar
  15. Mahardika A, Andriana BB, Susanto AB, Matsuyoshi H, Sato H (2018) EXPRESS: development of quantitative analysis techniques for saccharification reactions using Raman spectroscopy. Appl Spectrosc:000370281877909.
  16. Manuhara GJ, Praseptiangga D, Riyanto RA (2016) Extraction and characterization of refined K-carrageenan of red algae [Kappaphycus alvarezii (Doty ex P.C. Silva, 1996)] originated from Karimun Jawa Islands. Aquatic Procedia 7:106–111CrossRefGoogle Scholar
  17. Masarin F, Cedeno FRP, Chavez EGS, de Oliveira LE, Gelli VC, Monti R (2016) Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol Biofuels 9:122Google Scholar
  18. McHugh DJ (2003) A guide to the seaweed industry. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  19. Meksiarun P, Spegazzini N, Matsui H, Nakajima K, Matsuda Y, Sato H (2015) In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy. Appl Spectrosc 69:45–51CrossRefGoogle Scholar
  20. Meksiarun P, Andriana BB, Matsuyoshi H, Sato H (2016) Non-invasive quantitative analysis of specific fat accumulation in subcutaneous adipose tissues using Raman spectroscopy. Sci Rep 6:37068CrossRefGoogle Scholar
  21. Msuya FE, Buriyo A, Omar I, Pascal B, Narrain K, Ravina JJM, Mrabu E, Wakibia JG (2014) Cultivation and utilisation of red seaweeds in the western Indian Ocean (WIO) region. J Appl Phycol 26:699–705CrossRefGoogle Scholar
  22. Nadler B, Coifman RR (2005) The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration. J Chemomet 19:107–118CrossRefGoogle Scholar
  23. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med 58:187–205CrossRefGoogle Scholar
  24. Normah O, Nazarifah I (2003) Production of semi-refined carrageenan from locally available red seaweed, Eucheuma cottonii on a laboratory scale. J Trop Agric Food Sc1 31(2):207–213Google Scholar
  25. Pereira L, Sousa A, Coelho H, Amado AM, Ribeiro-Claro PJA (2003) Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol Eng 20:223–228CrossRefGoogle Scholar
  26. Pereira L, Amado AM, Critchley AT, van de Velde F, Ribeiro-Claro PJA (2009) Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and FT-Raman). Food Hydrocoll 30:1–7Google Scholar
  27. Pereira L, Gheda SF, Ribeiro-Claro PJA (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem 2013:1–7CrossRefGoogle Scholar
  28. Poeloengasih CD, Bardant TB, Rosyida VT, Maryana R, Wahono SK (2014) Coastal community empowerment in processing Kappaphycus alvarezii: a case study in Ceningan Island, Bali, Indonesia. J Appl Phycol 26:1539–1546CrossRefGoogle Scholar
  29. Rhein-Knudsen N, Ale MT, Meyer AS (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar Drugs 13:3340–3359CrossRefGoogle Scholar
  30. Sato H, Chiba H, Tashiro H, Ozaki Y (2001) Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J Biomed Opt 6:366–370CrossRefGoogle Scholar
  31. Smith R, Wrightb KL, Ashton L (2016) Raman spectroscopy: an evolving technique for live cell studies. Analyst 141:3590–3600CrossRefGoogle Scholar
  32. Soedjak SH (1994) Colorimetric determination of carrageenans and other anionic hydrocolloids with methylene blue. Anal Chem 66:4514–4518CrossRefGoogle Scholar
  33. Soegiarto A, Sulustijo (1990) Utilization and farming of seaweeds in Indonesia In: Dogma IJ Jr, Trono GC Jr, Tabbada RA (Eds) Culture and use of algae in Southeast Asia, proceedings of the symposium on culture and utilization of algae in Southeast Asia, 8–11 December 1981, Philippines, pp 9–19Google Scholar
  34. Vega GB, Ceballos JA, Anzalone A, Digman MA, Gratton E (2017) A laser-scanning confocal microscopy study of carrageenan in red algae from seaweed farms near the Caribbean entrance of the Panama Canal. J Appl Phycol 29:495–508CrossRefGoogle Scholar
  35. Vreeland V, Zablackis E, Laetsch WM (1992) Monoclonal antibodies as molecular markers for the intracellular and cell wall distribution of carrageenan epitotes in Kappaphycus alvarezii (Rhodophyta) during tissue development. J Phycol 28:328–342CrossRefGoogle Scholar
  36. Vreeland V, Kloareg B (2000) Cell wall biology in red algae: divide and conquer. J Phycol 36:793–797CrossRefGoogle Scholar
  37. Webber V, De Carvalho SM, Ogliari PJ, Hayashi L, Barreto PLM (2012) Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Ciênc Tecnol Aliment Campinas 32(4):812–818CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biomedical Chemistry, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan
  2. 2.Department of Marine ScienceDiponegoro UniversitySemarangIndonesia

Personalised recommendations