Advertisement

Journal of Applied Phycology

, Volume 31, Issue 2, pp 885–892 | Cite as

A cheap and sensitive method for imaging Gracilaria (Rhodophyta, Gracilariales) growth

  • Cicero Alves-Lima
  • André Reis Azevedo Teixeira
  • Carlos Takeshi Hotta
  • Pio ColepicoloEmail author
VI REDEALGAS WORKSHOP (RIO DE JANEIRO, BRAZIL)

Abstract

Growth rate is an informative measurement for the culture of any organism, as it provides cues about fitness and allows selection of strains. For seaweeds, the gain of mass has been the most used methodology at the laboratory, but it can be laborious and increase the contamination. In this work, we present an easy, accessible, and sensitive method that uses imaging to measure the growth rate at a laboratory scale of three Gracilaria species (Rhodophyta, Gracilariales): G. caudata J. Agardh, G. domingensis (Kützing) Sonder ex Dickie, and G. tenuistipitata C.F.Chang & B.M.Xia. A CMOS camera with a flex clamp and a macro lens was attached to a common retort stand in order to measure the algae thalli from the bottom of a Petri dish. Then, the images were batch processed for area and length measurement and correlated to mass. A high correlation between mass and area was verified for all three species, but not for length (G. domingensis, R2 = 0.68). G. tenuistipitata had the highest growth rate in area (17.9% day−1) and G. domingensis the lowest (3.1% day−1). Correlation differences between area and mass can be due to species-specific morphology. Area measurement can efficiently replace weighing. The present method is highly adaptable to many experimental setups, uses a cheap camera and free software, is not labor intensive and does not require much computer knowledge.

Keywords

Gracilaria Growth Imaging Morphometry Phenotyping 

Notes

Acknowledgements

We thank Mariana Cabral de Oliveira and Nair Sumie Yokoya for providing the Gracilaria species studied in this work.

Funding information

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grants 2015/06260-0 and 2016/06931-4. CAL received a FAPESP scholarship (2013/05301-9).

Supplementary material

10811_2018_1608_MOESM1_ESM.doc (3.7 mb)
ESM 1 (DOC 3834 kb)

References

  1. Aguilera J, Figueroa F, Niell FX (1997) Photocontrol of short-term growth in Porphyra leucosticta (Rhodophyta). Eur J Phycol 32:417–424CrossRefGoogle Scholar
  2. Barufi JB, de Oliveira EC, Plastino EM, de Oliveira MC (2010) Life history, morphological variability and growth rates of the life phases of Gracilaria tenuistipitata (Rhodophyta: Gracilariales) in vitro. Sci Mar 74:297–303CrossRefGoogle Scholar
  3. Bodner G, Alsalem M, Nakhforoosh A, Arnold T, Leitner D (2017) RGB and spectral rootimaging for plant phenotyping and physiological research: experimental setup and imaging protocols. J Vis Exp 2016(126):56251Google Scholar
  4. Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP (2014) Image-based high-throughput field phenotyping of crop roots. Plant Physiol 166:470–486CrossRefGoogle Scholar
  5. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefGoogle Scholar
  6. Clark RT, Famoso AN, Zhao K, Shaff JE, Craft EJ, Bustamante CD, McCouch SR, Aneshansley DJ, Kochian LV (2012) High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ 36:454–466CrossRefGoogle Scholar
  7. Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465CrossRefGoogle Scholar
  8. Das A, Schneider H, Burridge J, Ascanio AKM, Wojciechowski T, Topp CN, Lynch JP, Weitz JS, Bucksch A (2015) Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics. Plant Meth 11:51CrossRefGoogle Scholar
  9. Durairatnam M, de Brito Medeiros TM, de Sena AM (1990) Studies on the yield and gel strength of agar from Gracilaria domingensis Sonder ex Kuetzing (Gracilariales, Rhodophyta) following the addition of calcium. Hydrobiologia 204/205:551–553CrossRefGoogle Scholar
  10. Edding M, León C, Ambler R (1987) Growth of Gracilaria sp. in the laboratory. Hydrobiologia 151/152:375–379CrossRefGoogle Scholar
  11. Escassi L, Aguilera J, Figueroa FL, Fernández JA (2002) Potassium drives daily reversible thallus enlargement in the marine red alga Porphyra leucosticta (Rhodophyta). Planta 214:759–766CrossRefGoogle Scholar
  12. FAO (2018) The state of world fisheries and aquaculture - meeting the sustainable development goals. Rome, Italy. pp. 227.Google Scholar
  13. Ferreira LB, Barufi JB, Plastino EM (2006) Growth of red and green strains of the tropical agarophyte Gracilaria cornea J. Agardh (Gracilariales, Rhodophyta) in laboratory. Rev Bras Botânica 29:187–192Google Scholar
  14. Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590CrossRefGoogle Scholar
  15. Gressler V, Fujii MT, Martins AP, Colepicolo P, Mancini-Filho J, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agricult 91:1687–1692CrossRefGoogle Scholar
  16. Gressler V, Fujii MT, Colepicolo P, Pinto E (2012) Characterization of volatile composition of Laurencia dendroidea by gas chromatography-mass spectrometry. Rev Bras Farmacog 22:805–813CrossRefGoogle Scholar
  17. Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW, Frommer WB (2012) Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp.  https://doi.org/10.3791/4290
  18. Haglund K, Pedérsen M (1992) Growth of the red alga Gracilaria tenuistipitata at high pH. Influence of some environmental factors and correlation to an increased carbonic-anhydrase activity. Bot Mar 35:579–587CrossRefGoogle Scholar
  19. Iyer-Pascuzzi AS, Symonova O, Mileyko Y, Hao Y, Belcher H, Harer J, Weitz JS, Benfey PN (2010) Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems. Plant Physiol 152:1148–1157CrossRefGoogle Scholar
  20. Lüning K (1992) Day and night kinetics of growth rate in green, brown and red seaweeds. J Phycol 28:794–803CrossRefGoogle Scholar
  21. Lüning K (1994) Circadian growth rhythm in juvenile sporophytes of Laminariales (Phaeophyta). J Phycol 30:193–199CrossRefGoogle Scholar
  22. Lüning K (2001) Circadian growth in Porphyra umbilicalis (Rhodophyta): spectral sensitivity of the circadian system. J Phycol 37:52–58CrossRefGoogle Scholar
  23. Lüning K, Titlyanov E, Titlyanova T (1997) Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. III. The red alga Porphyra umbilicalis. Eur J Phycol 32:167–173CrossRefGoogle Scholar
  24. Macchiavello J (1998) Growth rate responses of five commercial strains of Gracilaria (Rhodophyta, Gracilariales) to temperature and light. J World Aquac Soc 29:259–266CrossRefGoogle Scholar
  25. Makarov VN, Schoschina EV, Lüning K (1995) Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. I. Juvenile sporophytes of Laminariales (Phaeophyta). Eur J Phycol 30:261–266CrossRefGoogle Scholar
  26. Martins RM, Nedel F, Guimarães VBS, Silva AF, Colepicolo P, Pereira CMP, Lund RG (2018) Macroalgae extracts From Antarctica have antimicrobial and anticancer potential. Front Microbiol 9.  https://doi.org/10.3389/fmicb.2018.00412
  27. Mendes LF, Stevani CV, Zambotti-Villela L, Yokoya NS, Colepicolo P (2014) Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta). Environ Sci Pollut Res 21:8216–8223CrossRefGoogle Scholar
  28. Mendes LF, Vale LAS, Martins AP, Yokoya NS, Marinho-Soriano E, Colepicolo P (2012) Influence of temperature, light and nutrients on the growth rates of the macroalga Gracilaria domingensis in synthetic seawater using experimental design. J Appl Phycol 24:1419–1426CrossRefGoogle Scholar
  29. Mendes LF, Zambotti-Villela L, Colepicolo P, Marinho-Soriano E, Stevani CV, Yokoya NS (2013) Metal cation toxicity in the alga Gracilaria domingensis as evaluated by the daily growth rates in synthetic seawater. J Appl Phycol 25:1939–1947CrossRefGoogle Scholar
  30. Piñeros MA, Larson BG, Shaff JE, Schneider DJ, Falcão AX, Yuan L, Clark RT, Craft EJ, Davis TW, Pradier P-L, Shaw NM, Assaranurak I, McCouch SR, Sturrock C, Bennett M, Kochian LV (2016) Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants. J Integr Plant Biol 58:230–241CrossRefGoogle Scholar
  31. Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200CrossRefGoogle Scholar
  32. Rellán-Álvarez R, Lobet G, Lindner H, Pradier P-L, Sebastian J, Yee M-C, Geng Y, Trontin C, LaRue T, Schrager-Lavelle A, Haney CH, Nieu R, Maloof J, Vogel JP, Dinneny JR (2015) GLO-roots: an imaging platform enabling multidimensional characterization of soil-grown root systems. Elife.  https://doi.org/10.7554/eLife.07597
  33. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  34. Terada R, Inoue S, Nishihara GN (2013) The effect of light and temperature on the growth and photosynthesis of Gracilariopsis chorda (Gracilariales, Rhodophtya) from geographically separated locations of Japan. J Appl Phycol 25:1863–1872CrossRefGoogle Scholar
  35. Titlyanov EA, Titlyanova TV, Lüning K (1996) Diurnal and circadian periodicity of mitosis and growth in marine macroalgae. II. The green alga Ulva pseudocurvata. Eur J Phycol 31:181–188CrossRefGoogle Scholar
  36. Torres FAE, Passalacqua TF, Velásquez AMA, Souza RA, Colepicolo P, Graminha MAS (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacog 24:265–276CrossRefGoogle Scholar
  37. Ursi S, Guimarães M, Plastino EM (2008) Deleterious effect of TRIS buffer on growth rates and pigment content of Gracilaria birdiae Platino & EC Oliveira (Gracilariales, Rhodophyta). Acta Bot Brasilica 22:891–896CrossRefGoogle Scholar
  38. Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bull Environ Contam Toxicol 73:979–986CrossRefGoogle Scholar
  39. Xu W, Ding G, Yokawa K, Baluška F, Li Q-F, Liu Y, Shi W, Liang J, Zhang J (2013) An improved agar-plate method for studying root growth and response of Arabidopsis thaliana. Sci Rep 3:1273CrossRefGoogle Scholar
  40. Yarnpakdee S, Benjakul S, Kingwascharapong P (2015) Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll 51:217–226CrossRefGoogle Scholar
  41. Yokoya NS, Handro W (1996) Effects of auxins and cytokinins on tissue culture of Grateloupia dichotoma (Gigartinales, Rhodophyta). Hydrobiologia 326:393–400CrossRefGoogle Scholar
  42. Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834CrossRefGoogle Scholar
  43. Yoshimura CY (2006) Avaliação do potencial de cultivo e produção de ágar de Gracilaria domingensis e de Gracilaria caudata (Rhodophyta, Gracilariales) na enseada de Armação do Itapocoroy (Penha, Santa Catarina). PhD Thesis, University of São Paulo, Brazil, pp. 163Google Scholar
  44. Yu C-H, Lim P-E, Phang S-M (2013) Effects of irradiance and salinity on the growth of carpospore-derived tetrasporophytes of Gracilaria edulis and Gracilaria tenuistipitata var liui (Rhodophyta). J Appl Phycol 25:787–794CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Cicero Alves-Lima
    • 1
  • André Reis Azevedo Teixeira
    • 1
  • Carlos Takeshi Hotta
    • 1
  • Pio Colepicolo
    • 1
    Email author
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations