Journal of Applied Phycology

, Volume 30, Issue 6, pp 3029–3041 | Cite as

Interactive effects of temperature and copper toxicity on photosynthetic efficiency and metabolic plasticity in Scenedesmus quadricauda (Chlorophyceae)

  • Wai-Kuan Yong
  • Kae-Shin Sim
  • Sze-Wan Poong
  • Dong Wei
  • Siew-Moi Phang
  • Phaik-Eem LimEmail author
8th Asian Pacific Phycological Forum


Warming and copper (Cu) toxicity are two key abiotic stressors that strongly affect cell growth, photosynthetic rate, and metabolism in microalgae. In this study, a freshwater chlorophyte, Scenedesmus quadricauda, was exposed to various concentrations of copper sulfate (300, 600, and 1000 μM nominal concentrations of CuSO4·5H2O) at 25 and 35 °C. The changes in cell density, photosynthetic parameters, in vivo absorption spectra, reactive oxygen species (ROS) levels, and metabolic profile were analyzed. The effects of copper toxicity on the physiology and biochemistry of microalgae were highly dependent on water temperature. The interactive effects of both stressors induced significant impact on the photosynthetic parameters such as maximum quantum yield (Fv/Fm), saturation irradiance (Ek), and non-photochemical quenching (NPQ). Temperature induced significant impact on cell density, Ek and NPQ, while the Cu toxicity significantly affected the Fv/Fm and NPQ. Changes in the in vivo absorption spectra and high levels of reactive oxygen species (ROS) were observed across different treatments. Overall, S. quadricauda adapted to the two abiotic stresses via NPQ and metabolic restructuring. Key metabolites including glycine, proline, hexadecanoic acid, propanoic acid, octadecanoic acid, galactose, lactose, and sucrose were involved in the microalgal response. The synergistic effects of temperature and Cu stresses on microalgae might affect community tolerance and species distribution in the long run.


Temperature stress Copper toxicity Chlorophyceae Scenedesmus Photosynthesis Metabolomics 



It is partly supported by Prof. Dong Wei from the Science and Technology Program in Marine and Fishery of Guangdong (Grant No. A201401C01) and the Science and Technology Program of Guangdong (Grant No. 2015A020216003, 2016A010105001), P.R. China.

Funding information

Financial support from Ministry of Higher Education’s HICOE grant (IOES-2014H), Fundamental Research Grant Scheme (FP048-2016), University of Malaya PPP Grant (PG267-2016A), and University of Malaya Research University Grants (RU009F-2015 and RU009H-2015).

Supplementary material

10811_2018_1574_MOESM1_ESM.pdf (219 kb)
Fig. S1 (PDF 219 kb)
10811_2018_1574_MOESM2_ESM.pdf (82 kb)
Table S1 (PDF 82 kb)


  1. Adams MS, Dillon CT, Vogt S, Lai B, Stauber J, Jolley DF (2016) Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy. Environ Sci Technol 50:8827–8839PubMedCrossRefGoogle Scholar
  2. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  3. Barati B, Lim P-E, Gan S-Y, Poong S-W, Phang S-M, Beardall J (2018) Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. J Appl Phycol 30:1–13CrossRefGoogle Scholar
  4. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596PubMedCrossRefGoogle Scholar
  5. Cairns JJ, Heath AG, Parker BC (1975) Temperature influence on chemical toxicity to aquatic organisms. J Water Pollut Control Fed 47:267–280PubMedGoogle Scholar
  6. Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen Y, Jiang X, Wang Y, Zhuang D (2017) Spatial characteristics of heavy metal pollution and the potential ecological risk of a typical mining area : a case study in China. Process Saf Environ Prot 113:204–219CrossRefGoogle Scholar
  8. Dai D, Gao Y, Chen J, Huang Y, Zhang Z, Xu F (2016) Time-resolved metabolomics analysis of individual differences during the early stage of lipopolysaccharide-treated rats. Sci Rep 6:34136PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dao LHT, Beardall J (2016) Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere 147:420–429PubMedCrossRefGoogle Scholar
  10. Dewez D, Geoffroy L, Vernet G, Popovic R (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquat Toxicol 74:150–159PubMedCrossRefGoogle Scholar
  11. El-Sheekh M, Abomohra AE-F, El-Azim MA (2017) Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus. Biotechnol Agron Soc Environ 21:233–239Google Scholar
  12. Fanesi A, Wagner H, Becker A, Wilhelm C (2016) Temperature affects the partitioning of absorbed light energy in freshwater phytoplankton. Freshw Biol 61:1365–1378CrossRefGoogle Scholar
  13. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580PubMedCrossRefGoogle Scholar
  14. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D, Nguyen T, Ray J, Kuehl J, Arevalo B, Westenskow PD, Wang J, Arkin AP, Deutschbauer AM, Patti GJ, Siuzdak G (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86:6931–6939PubMedPubMedCentralCrossRefGoogle Scholar
  15. Häder D, Villafañe VE, Helbling EW (2014) Productivity of aquatic primary producers under global climate change. Photochem Photobiol Sci 13:1370–1392PubMedCrossRefGoogle Scholar
  16. Hamed SM, Selim S, Klöck G, AbdElgawad H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25PubMedCrossRefGoogle Scholar
  17. Harvey PJ, Handley HK, Taylor MP (2016) Widespread copper and lead contamination of household drinking water, New South Wales, Australia. Environ Res 151:275–285PubMedCrossRefGoogle Scholar
  18. He H, Chen F, Li H, Xiang W, Li Y, Jiang Y (2010) Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of Alexandrium tamarense. Harmful Algae 9:98–104CrossRefGoogle Scholar
  19. Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Con W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260PubMedCrossRefGoogle Scholar
  20. Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013a) Copper toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals 26:731–740PubMedCrossRefGoogle Scholar
  21. Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013b) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364PubMedCrossRefGoogle Scholar
  22. Jiang Y, Zhu Y, Hu Z, Lei A, Wang J (2016) Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology 25:1417–1425PubMedCrossRefGoogle Scholar
  23. Khodami S, Surif M, Wan Maznah WO, Daryanabard R (2017) Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia. Mar Pollut Bull 114:615–622PubMedCrossRefGoogle Scholar
  24. Kluender C, Sans-Piché F, Riedl J, Altenburger R, Härtig C, Laue G, Schmitt-Jansen M (2008) A metabolomics approach to assessing phytotoxic effects on the green alga Scenedesmus vacuolatus. Metabolomics 5:59–71CrossRefGoogle Scholar
  25. Knauer K, Behra R, Sigg L (1997) Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ Toxicol Chem 16:220–229CrossRefGoogle Scholar
  26. Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. J Phycol 44:311–319PubMedCrossRefGoogle Scholar
  27. Kováčik J, Klejdus B, Babula P, Hedbavny J (2016) Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J Hazard Mater 306:58–66PubMedCrossRefGoogle Scholar
  28. Kropat J, Gallaher SD, Urzica EI, Nakamoto SS, Strenkert D, Tottey S, Mason AZ, Merchant SS (2015) Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis. Proc Natl Acad Sci U S A 112:2644–2651PubMedPubMedCentralCrossRefGoogle Scholar
  29. Küpper H, Küpper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133CrossRefGoogle Scholar
  30. Küpper H, Šetlík I, Šetliková E, Ferimazova N, Spiller M, Küpper FC (2003) Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30:1187–1196CrossRefGoogle Scholar
  31. Lambert AS, Dabrin A, Foulquier A, Morin S, Rosy C, Coquery M, Pesce S (2017) Influence of temperature in pollution-induced community tolerance approaches used to assess effects of copper on freshwater phototrophic periphyton. Sci Total Environ 607–608:1018–1025PubMedCrossRefGoogle Scholar
  32. Lee K-K, Lim P-E, Poong S-W, Wong C-Y, Phang S-M, Beardall J (2017) Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. Chin J Oceanol LimnolGoogle Scholar
  33. Leung PTY, Yi AX, Ip JCH, Mak SST, Leung KMY (2017) Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. Mar Pollut Bull 124:938–945PubMedCrossRefGoogle Scholar
  34. Li W, Xu X, Fujibayashi M, Niu Q, Tanaka N, Nishimura O (2016) Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems. Environ Sci Pollut Res 23:19847–19860CrossRefGoogle Scholar
  35. Lozano P, Trombini C, Crespo E, Blasco J, Moreno-Garrido I (2014) ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol Environ Saf 104:294–301PubMedCrossRefGoogle Scholar
  36. Malapascua J, Jerez C, Sergejevová M, Figueroa F, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140CrossRefGoogle Scholar
  37. Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem 32:49–61PubMedPubMedCentralCrossRefGoogle Scholar
  38. Morin S, Lambert AS, Rodriguez EP, Dabrin A, Coquery M, Pesce S (2017) Changes in copper toxicity towards diatom communities with experimental warming. J Hazard Mater 334:223–232PubMedCrossRefGoogle Scholar
  39. Müller E, Behra R, Sigg L (2016) Toxicity of engineered copper (Cu0) nanoparticles to the green alga Chlamydomonas reinhardtii. Environ Chem 13:457–463CrossRefGoogle Scholar
  40. Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299PubMedCrossRefGoogle Scholar
  41. Nalewajko C, Colman B, Olaveson M (1997) Effects of pH on growth, photosynthesis, respiration, and copper tolerance of three Scenedesmus strains. Environ Exp Bot 37:153–160CrossRefGoogle Scholar
  42. Nikinmaa M (2013) Climate change and ocean acidification—interactions with aquatic toxicology. Aquat Toxicol 126:365–372PubMedCrossRefGoogle Scholar
  43. Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145PubMedCrossRefGoogle Scholar
  44. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35:971–986PubMedCrossRefGoogle Scholar
  45. OECD (2002) OECD guidelines for the testing of chemicals. 1–21Google Scholar
  46. Olsson S, Puente-Sánchez F, Gómez MJ, Aguilera A (2015) Transcriptional response to copper excess and identification of genes involved in heavy metal tolerance in the extremophilic microalga Chlamydomonas acidophila. Extremophiles 19:657–672PubMedCrossRefGoogle Scholar
  47. Oukarroum A (2016) Alleviation of metal-induced toxicity in aquatic plants by exogenous compounds: a mini-review. Water Air Soil Pollut 227:204CrossRefGoogle Scholar
  48. Oukarroum A, Perreault F, Popovic R (2012) Interactive effects of temperature and copper on photosystem II photochemistry in Chlorella vulgaris. J Photochem Photobiol B 110:9–14PubMedCrossRefGoogle Scholar
  49. Perales-Vela HV, González-Moreno S, Montes-Horcasitas C, Cañizares-Villanueva RO (2007) Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281PubMedCrossRefGoogle Scholar
  50. Phang S-M, Chu W-L (1999) University of Malaya Algae Culture Collection (UMACC). Catalogue of strains. Institute of Postgraduate Studies and Research, University of Malaya, Kuala LumpurGoogle Scholar
  51. Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E (2015) The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ Sci Pollut Res 22:19112–19123CrossRefGoogle Scholar
  52. Sibi G, Anuraag TS, Bafila G (2014) Copper stress on cellular contents and fatty acid profiles in Chlorella species. Online J Biol Sci 14:209–217CrossRefGoogle Scholar
  53. Sunda W, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529Google Scholar
  54. Suresh Kumar K, Dahms H-U, Lee J-S, Kim HC, Lee WC, Shin K-H (2014) Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol Environ Saf 104:51–71PubMedCrossRefGoogle Scholar
  55. Suresh Kumar K, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352PubMedCrossRefGoogle Scholar
  56. Todgham AE, Stillman JH (2013) Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr Comp Biol 53:539–544PubMedCrossRefGoogle Scholar
  57. Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long-term exposure to Cu2+ and Zn2+. Chemosphere 62:538–544PubMedCrossRefGoogle Scholar
  58. Vavilin DV, Ducruet JM, Matorin DN, Venediktov PS, Rubin AB (1998) Membrane lipid peroxidation, cell viability and photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions. J Photochem Photobiol B 42:233–239CrossRefGoogle Scholar
  59. Walz H (2000) WinControl—Windows software for PAM Fluorometers user’s manual. Heinz Walz GmbH, EffeltrichGoogle Scholar
  60. Wang M-J, Wang W-X (2008) Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis. Environ Sci Technol 42:8603–8608PubMedCrossRefGoogle Scholar
  61. Wang Y, Xu L, Shen H et al (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots. Sci Rep 5:18296PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wang H, Sathasivam R, Ki J (2017) Physiological effects of copper on the freshwater alga Closterium ehrenbergii Meneghini (Conjugatophyceae) and its potential use in toxicity assessments. Algae 32:131–137CrossRefGoogle Scholar
  63. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16CrossRefGoogle Scholar
  64. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0––making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257PubMedPubMedCentralCrossRefGoogle Scholar
  65. Xia L, Song S, Hu C (2016) High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. J Appl Phycol 28:831–837CrossRefGoogle Scholar
  66. Yong W-K, Tan Y-H, Poong S-W, Lim P-E (2016) Response of microalgae in a changing climate and environment. Malays J Sci 35:167–187Google Scholar
  67. Zhang W, Tan NGJ, Li SFY (2014) NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol BioSyst 10:149–160PubMedCrossRefGoogle Scholar
  68. Zhang W, Tan NGJ, Fua B, Li SFY (2015) Metallomics and NMR-based metabolomics of Chlorella sp. reveal synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics 7:426–438PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Wai-Kuan Yong
    • 1
    • 2
  • Kae-Shin Sim
    • 3
  • Sze-Wan Poong
    • 1
  • Dong Wei
    • 4
  • Siew-Moi Phang
    • 1
    • 3
  • Phaik-Eem Lim
    • 1
    Email author
  1. 1.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Graduate StudiesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  4. 4.School of Food Sciences and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations