Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 615–624 | Cite as

Effects of CO2 supply on growth and photosynthetic ability of young sporophytes of the economic seaweed Sargassum fusiforme (Sargassaceae, Phaeophyta)

  • Heng Jiang
  • Dinghui ZouEmail author
  • Wenyong Lou
  • Jingyu Gong
Article

Abstract

Young sporophytes of Sargassum fusiforme were cultured at decreased CO2 (20 μatm), ambient CO2 (400 μatm), and high CO2 (1000 μatm), and then the quantum efficiency of open photosystem II (Fv′/Fm′), initial slope of the rapid light curves (α), and relative maximum photosynthetic electron transport rate (rETRm) of the algae under different temperatures and light levels were measured. The study aimed to investigate how the decreased CO2 and high CO2 supply affected the growth and photosynthetic functions of S. fusiforme young sporophytes. While both lowered and increased CO2 supply significantly reduced the growth rates of the alga, greater declines were observed under decreased CO2. The Fv′/Fm′, α, and rETRm of alga remained stable after short-term (120 min) exposures to 18, 22, and 26 °C, as well as to highlight (300 μmol photons m−2 s−1), with no significant difference among the three CO2 supply treatments. Hence, neither decreased nor increased CO2 affected the photosynthetic responses of S. fusiforme young sporophytes to temperature and high light. However, the Fv′/Fm′ of the three CO2 treatments declined by 72% under 60 μmol photons m−2 s−1, suggesting its sensitivity to short-term low light. These observations are crucial for the improved management of S. fusiforme for commercial farming, while ensuring its sustainable production and supply amid seawater pH shifts brought about by global climate change.

Keywords

CO2 Light Temperature Growth Chlorophyll fluorescence Young sporophytes Phaeophyta 

Notes

Acknowledgements

This study was supported by the Science and Technology Planning Project of Guangdong Province (2016A020222001), National Natural Science Foundation of China (No. 31741018), and project funded by China Postdoctoral Science Foundation (2018M633044).

References

  1. Andría JR, Brun FG, Pérez-Lloréns JL, Vergara JJ (2001) Acclimation responses of Gracilaria sp. (Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration. Bot Mar 44:361–370CrossRefGoogle Scholar
  2. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504CrossRefGoogle Scholar
  3. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  4. Chung IK, Oak JH, Lee JA, Shin JA, Kim GJ, Park KS (2013) Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview. ICES J Mar Sci 11:1–7Google Scholar
  5. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  6. Edwards KF, Thomas MK, Klausmeier CA, Litchman E (2016) Phytoplankton growth and the interaction of light and temperature: a synthesis at the species and community level. Limnol Oceanogr 61:1232–1244CrossRefGoogle Scholar
  7. Friedlander M, Levy I (1995) Cultivation of Gracilaria in outdoor tanks and ponds. J Appl Phycol 7:315–324CrossRefGoogle Scholar
  8. Gao KS, Aruga YS, Asada K, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:356–362CrossRefGoogle Scholar
  9. García-Sânchez MJ, Fernândez JA, Niell FX (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61CrossRefGoogle Scholar
  10. Gordillo FJL, Niell FX, Figueroa FLL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70CrossRefGoogle Scholar
  11. Gordillo FJL, Figueroa FL, Niell FX (2003) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322CrossRefGoogle Scholar
  12. Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078CrossRefGoogle Scholar
  13. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X et al (2001) Climate change 2001: the scientific basis. Cambridge: Cambridge University Press. 881 ppGoogle Scholar
  14. Israel A, Friedlander M (1998) Inorganic carbon utilisation and growth abilities in the marine red macroalga Gelidiopsis sp. Isr J Plant Sci 46:117–124CrossRefGoogle Scholar
  15. Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453CrossRefGoogle Scholar
  16. Jassby AD, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr 21:540–547CrossRefGoogle Scholar
  17. Jiang H, Zou DH, Li XH (2016a) Growth, photosynthesis and nutrient uptake by Grateloupia livida (Halymeniales, Rhodophyta) in response to different carbon levels. Phycologia 55:462–468CrossRefGoogle Scholar
  18. Jiang H, Zou DH, Chen BB (2016b) Effects of lowered carbon supplies on two farmed red seaweeds, Pyropia haitanensis (Bangiales) and Gracilaria lemaneiformis (Gracilariales), grown under different sunlight conditions. J Appl Phycol 28:3469–3477CrossRefGoogle Scholar
  19. Jiang H, Zou DH, Chen WZ, Yang YF (2017a) The photosynthetic responses to stocking depth and algal mat density in the farmed seaweed Gracilaria lemaneiformis (Gracilariales, Rhodophyta). Environ Sci Pollut Res 24:25309–25314CrossRefGoogle Scholar
  20. Jiang H, Zou DH, Lou WY, Ye CP (2017b) Effects of stocking density and decreased carbon supply on the growth and photosynthesis in the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta). J Appl Phycol 29:3057–3065CrossRefGoogle Scholar
  21. Jiang H, Zou DH, Lou WY, Deng YY, Zeng XP (2018) Effects of seawater acidification and alkalization on the farmed seaweed, Pyropia haitanensis (Bangiales, Rhodophyta), grown under different irradiance conditions. Algal Res 31:413–420CrossRefGoogle Scholar
  22. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Chang Biol 19:103–132CrossRefGoogle Scholar
  23. Kübler JE, Davison IR (1995) Thermal acclimation of light use characteristics of Chondrus crispus (Rhodophyta). Eur J Phycol 30:189–195CrossRefGoogle Scholar
  24. Kurkdjian A, Guern J (1989) Intracellular pH: measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40(1):271–303Google Scholar
  25. Larcher S (1994) Photosynthesis as a tool for indicating temperature stress events. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 261–277Google Scholar
  26. Larcher S (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems 134:279–295CrossRefGoogle Scholar
  27. Liu YT, Xu JT, Gao KS (2017) CO2-driven seawater acidification increases photochemical stress in a green alga. Phycologia 51:562–566CrossRefGoogle Scholar
  28. Lopes PF, Oliveira MC, Colepicolo P (1997) Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistpitata (Rhodophyta). J Phycol 33:225–231Google Scholar
  29. Lu CM, Chau CW, Zhang JH (2000) Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis-assessment by chlorophyll fluorescence analysis. Chemosphere 41:191–196CrossRefGoogle Scholar
  30. Machalek KM, Davison IR, Falkowski PG (1996) Thermal acclimation and photoacclimation of photosynthesis in the brown alga Laminaria saccharina. Plant Cell Environ 19:1005–1016CrossRefGoogle Scholar
  31. Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461CrossRefGoogle Scholar
  32. Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107:308–341CrossRefGoogle Scholar
  33. Pang SJ, Zhang ZH, Zhao HJ, Sun JZ (2007) Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J Appl Phycol 19:557–565CrossRefGoogle Scholar
  34. Ralph PJ (1998) Photosynthetic response of laboratory-cultured Halophila ovalis to thermal stress. Mari Ecol Prog Ser 171:123–130CrossRefGoogle Scholar
  35. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237CrossRefGoogle Scholar
  36. Ralph PJ, Gademann R, Larkum AWD, Schreiber U (1999) In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar Ecol Prog Ser 180:139–147CrossRefGoogle Scholar
  37. Richards DK, Hurd CL, Pritchard DW, Wing SR, Hepburn CD (2011) Photosynthetic response of monospecific macroalgal stands to density. Aquat Biol 13:41–49CrossRefGoogle Scholar
  38. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70Google Scholar
  39. Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Biol 30:289–311CrossRefGoogle Scholar
  40. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z, Eds (2007) Climate change 2007: the physical science basis. Cambridge University Press, 996 pp.Google Scholar
  41. Stumm W, Morgan JJ (1981) Aquatic Chemistry, Wiley, New York. 583 pGoogle Scholar
  42. Suárez-Álvarez S, Gómez-Pinchetti JL, García-Reina G (2012) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J Appl Phycol 24:815–823CrossRefGoogle Scholar
  43. Takahashi T, Feely RA, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT (1997) Global air-sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. Proc Nat Acad Sci USA 94:8292–8299CrossRefGoogle Scholar
  44. Talarico L, Maranzana G (2000) Light and adaptive responses in red macroalgae: an overview. J Photochem Photobiol B 56:1–11CrossRefGoogle Scholar
  45. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  46. Xu JT, Gao KS (2012) Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol 160:1762–1769CrossRefGoogle Scholar
  47. Zacher K, Roleda MY, Hanelt D, Wiencke C (2007) UV effects on photosynthesis and DNA in propagules of three Antarctic seaweeds (Adenocystis utricularis, Monostroma hariotii and Porphyra endiviifolium). Planta 225:1505–1516CrossRefGoogle Scholar
  48. Zou DH (2014) The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta). J Appl Phycol 26:2417–2424CrossRefGoogle Scholar
  49. Zou DH, Gao KS (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517CrossRefGoogle Scholar
  50. Zou DH, Gao KS (2010a) Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environment. Springer, Berlin, pp 115–126Google Scholar
  51. Zou D, Gao K (2010b) Photosynthetic acclimation to different light levels in the brown marine macroalga, Hizikia fusiformis (Sargassaceae, Phaeophyta). J Appl Phycol 22:395–404CrossRefGoogle Scholar
  52. Zou DH, Gao KS, Xia JR (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J Phycol 39:1095–1100CrossRefGoogle Scholar
  53. Zou DH, Gao KS, Ruan ZX (2006) Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. J Appl Phycol 18:195–201CrossRefGoogle Scholar
  54. Zou DH, Gao KS, Chen WZ (2011) Photosynthetic carbon acquisition in Sargassum henslowianum (Fucales, Phaeophyta), with special reference to the comparison between the vegetative and reproductive tissues. Photosynth Res 107:159–168CrossRefGoogle Scholar
  55. Zou D, Gao K, Harley C (2014) Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilaria lemaneiformis (Gracilariales, Rhodophyta). J Phycol 50:366–375Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Heng Jiang
    • 1
    • 2
  • Dinghui Zou
    • 1
    • 3
    • 4
    Email author
  • Wenyong Lou
    • 2
  • Jingyu Gong
    • 1
  1. 1.School of Environment and EnergySouth China University of TechnologyGuangzhouChina
  2. 2.School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution ControlSouth China University of TechnologyGuangzhouChina
  4. 4.The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationGuangzhouChina

Personalised recommendations