Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 171–181 | Cite as

A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light

  • Wei Ding
  • Jun Peng
  • Yongteng Zhao
  • Peng Zhao
  • Jun-Wei Xu
  • Tao Li
  • Xuya YuEmail author
Article

Abstract

Haematococcus pluvialis is one of the best natural sources of the high-value antioxidant astaxanthin. The use of biotic or abiotic elicitors is an effective strategy to improve astaxanthin production. In this study, a strategy combining diethyl aminoethyl hexanoate (DA-6) and high light was used to promote the accumulation of astaxanthin in H. pluvialis LUGU. The effect of DA-6 on the astaxanthin content, reactive oxygen species (ROS), and transcriptional expression of six astaxanthin biosynthetic genes in H. pluvialis LUGU was investigated. The results showed that treatment with 0.1 mM DA-6 increased the astaxanthin content to 30.95 mg g−1, which was 2.01-fold higher than that of the control (15.43 mg g−1). Moreover, adding exogenous DA-6 significantly accelerated the transcription of chy, pds, and ptox2, which are responsible for substrate conversion and electron transport during the process of astaxanthin formation under conditions of high light. The level of reactive oxygen species (ROS) and the upregulation of astaxanthin biosynthesis-related genes increased astaxanthin accumulation under DA-6 high light conditions. This work is beneficial in developing an efficient strategy for the hyperproduction of astaxanthin.

Keywords

Haematococcus pluvialis Astaxanthin Diethyl aminoethyl hexanoate ROS Astaxanthin biosynthetic genes 

Notes

Acknowledgements

This work was funded by the National Natural Science Foundation of China (21766012), Key Science and Technology Project of Yunan Province (2018ZG003), the National Natural Science Foundation of China (21666012), and the Health Science and Technology Plan Projects of Yunnan Province, China (2014NS227).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the immutans terminal oxidase. Physiol Plant 120:4–11CrossRefGoogle Scholar
  2. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefGoogle Scholar
  3. Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304CrossRefGoogle Scholar
  4. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117CrossRefGoogle Scholar
  5. Campos MD, Campos C, Cardoso HG, Simon PW, Oliveira M, Nogales A, Arnholdt-Schmitt B (2016) Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation. Plant Gene 5:13–21CrossRefGoogle Scholar
  6. Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandmann G, Mache R, Coupland G, Kuntz M (1999) Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57–68CrossRefGoogle Scholar
  7. Ding W, Zhao P, Peng J, Zhao Y, Xu JW, Li T, Yu X (2018) Melatonin enhances astaxanthin accumulation in the green microalga Haematococcus pluvialis by mechanisms possibly related to abiotic stress tolerance. Algal Res 33:256–265CrossRefGoogle Scholar
  8. Domınguez-Bocanegra AR, Legarreta IG, Jeronimo FM, Campocosio AT (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214CrossRefGoogle Scholar
  9. Droop MR (1954) Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Arch Mikrobiol 20:391–397CrossRefGoogle Scholar
  10. Gao Z, Meng C, Zhang X, Xu D, Miao X, Wang Y, Yang L, Lv H, Chen L, Ye N (2012a) Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzym Microb Technol 51:225–230CrossRefGoogle Scholar
  11. Gao Z, Meng C, Zhang X, Xu D, Zhao Y, Wang Y, Lv H, Yang L, Chen L, Ye N (2012b) Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS One 7:e42243CrossRefGoogle Scholar
  12. Gao Z, Meng C, Chen YC, Ahmed F, Mangott A, Schenk PM, Li Y (2015) Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress. J Appl Phycol 27:1853–1860CrossRefGoogle Scholar
  13. Han D, Li Y, Hu Q (2013) Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae 28:131–147CrossRefGoogle Scholar
  14. Harker M, Tsavalos AJ, Young AJ (1996) Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour Technol 55:207–214CrossRefGoogle Scholar
  15. He S, Wu Q, He Z (2015) Growth-promoting hormone DA-6 assists phytoextraction and detoxification of Cd by ryegrass. Int J Phytoremediation 17:597–603CrossRefGoogle Scholar
  16. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci 46:185–196CrossRefGoogle Scholar
  17. Hong ME, Choi YY, Sim SJ (2016) Effect of red cyst cell inoculation and iron (II) supplementation on autotrophic astaxanthin production by Haematococcus pluvialis under outdoor summer conditions. J Biotechnol 218:25–33CrossRefGoogle Scholar
  18. Hunt RW, Chinnasamy S, Bhatnagar A, Das KC (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl Biochem Biotechnol 162:2400–2414CrossRefGoogle Scholar
  19. Hunt RW, Chinnasamy S, Das KC (2011) The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Appl Biochem Biotechnol 164:1350–1365CrossRefGoogle Scholar
  20. Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766CrossRefGoogle Scholar
  21. Jiang Y, Jiang Y, He S, Zhang H, Pan C (2012) Dissipation of diethyl aminoethyl hexanoate (DA-6) residues in pakchoi, cotton crops and soil. Bull Environ Contam Toxicol 88:533–537CrossRefGoogle Scholar
  22. Jiang L, Pei H, Hu W, Han F, Zhang L, Hou Q (2015) Effect of diethyl aminoethyl hexanoate on the accumulation of high-value biocompounds produced by two novel isolated microalgae. Bioresour Technol 197:178–184CrossRefGoogle Scholar
  23. Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Biosci Bioeng 71:335–339Google Scholar
  24. Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873PubMedPubMedCentralGoogle Scholar
  25. Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797CrossRefGoogle Scholar
  26. Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263CrossRefGoogle Scholar
  27. Liang CX, Li YB, Xu JW, Wang JL, Miao XL, Tang YJ, Gu TY, Zhong JJ (2010) Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Appl Microbiol Biotechnol 86:1367–1374CrossRefGoogle Scholar
  28. Lin B, Ahmed F, Du H, Li Z, Yan Y, Huang Y, Cui M, Yin Y, Li B, Wang M, Meng C, Gao Z (2018) Plant growth regulators promote lipid and carotenoid accumulation in Chlorella vulgaris. J Appl Phycol 30:1549–1561CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  30. Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S (2010) Methyl jasmonate-or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol 101:6468–6474CrossRefGoogle Scholar
  31. Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556CrossRefGoogle Scholar
  32. Parjikolaei BR, El-Houri RB, Fretté XC, Christensen KV (2015) Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. J Food Eng 155:22–28CrossRefGoogle Scholar
  33. Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172:97–103CrossRefGoogle Scholar
  34. Sarada R, Tripathi U, Ravishankar GA (2002) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627CrossRefGoogle Scholar
  35. Shang M, Ding W, Zhao Y, Xu JW, Zhao P, Li T, Yu X (2016) Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole. J Biotechnol 236:199–207CrossRefGoogle Scholar
  36. Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356CrossRefGoogle Scholar
  37. Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc Natl Acad Sci U S A 95:11482–11488CrossRefGoogle Scholar
  38. Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG (2013) The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: a review. J Plant Growth Regul 32:417–428CrossRefGoogle Scholar
  39. Torzillo G, Göksan T, Isik O, Gökpinar Ş (2005) Photon irradiance required to support optimal growth and interrelations between irradiance and pigment composition in the green alga Haematococcus pluvialis. Eur J Phycol 40:233–240CrossRefGoogle Scholar
  40. Voß U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319CrossRefGoogle Scholar
  41. Wang J, Sommerfeld M, Hu Q (2009) Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203CrossRefGoogle Scholar
  42. Wen Z, Liu Z, Hou Y, Liu C, Gao F, Zheng Y, Chen F (2015) Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis. Enzym Microb Technol 78:10–17CrossRefGoogle Scholar
  43. Yu X, Niu X, Zhang X, Pei G, Liu J, Chen L, Zhang W (2015) Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. Algal Res 11:284–293CrossRefGoogle Scholar
  44. Zhang Z, Sun D, Mao X, Liu J, Chen F (2016) The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic Chlorella zofingiensis. Algal Res 19:178–183CrossRefGoogle Scholar
  45. Zhang Z, Sun D, Cheng KW, Chen F (2018) Inhibition of autophagy modulates astaxanthin and total fatty acid biosynthesis in Chlorella zofingiensis under nitrogen starvation. Bioresour Technol 247:610–615CrossRefGoogle Scholar
  46. Zhao Y, Shang M, Xu JW, Zhao P, Li T, Yu X (2015) Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid. Process Biochem 50:2072–2077CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Life Sciences and TechnologyKunming University of Science and TechnologyKunmingChina
  2. 2.Department of Thoracic SurgeryThe First People’s Hospital of Yunnan ProvinceKunmingChina

Personalised recommendations