Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 683–690 | Cite as

Proximate composition and the production of fermentable sugars, levulinic acid, and HMF from Gracilaria fisheri and Gracilaria tenuistipitata cultivated in earthen ponds

  • Nattawarit Nunraksa
  • Surichay Rattanasansri
  • Jantana Praiboon
  • Anong ChirapartEmail author
Article

Abstract

The red seaweeds are generally known to have a high content of polysaccharides and low content of lignin. They can be used as a bioethanol feedstock and to produce biochemicals. This study was conducted to examine the pretreatment conditions to improve the production of fermentable sugars and by-products from Gracilaria fisheri and Gracilaria. tenuistipitata. The algal materials were gathered from earthen pond cultivation. The pretreatment was conducted at different concentrations of H2SO4 (0.2–1 M) and time (30–150 min) at 95 °C. The proximate composition and contents of glucose, galactose, levulinic acid, and 5-hydroxymethylfurfural (5-HMF) were analyzed. Our results showed high carbohydrate content of 63.01 ± 0.47 g carbohydrate (100 g TS)−1 for G. fisheri and 59.07 ± 0.43 g carbohydrate (100 g TS)−1 for G. tenuistipitata. The optimal pretreatment with 1 M of H2SO4 at 95 °C for 150 min resulted in high concentrations of sugars in G. fisheri (7.86 g L−1 glucose, 8.37 g L−1 galactose) compared to G. tenuistipitata (3.15 g L−1 glucose, 5.75 g L−1 galactose). The pretreatment of the algae resulted in concentrations of 5-HMF for G. fisheri and G. tenuistipitata of 1.55 and 1.42 g L−1, respectively. The levulinic acid concentration was 3.66 g L−1 for G. fisheri and 6.12 g L−1 for G. tenuistipitata. Gracilaria fisheri was more susceptible to the sulfuric acid hydrolysis compared to G. tenuistipitata. Our study revealed that the acid hydrolysis of G. fisheri and G. tenuistipitata can improve the yield of sugars to produce bioethanol feedstocks.

Keywords

Rhodophyta Agarophyte By-product Hydroxymethylfurfural Levulinic acid Hydrolysis 

Notes

Acknowledgements

This research was partly supported by the Graduate Scholarship “72 years Scholarship Kasetsart University.” The authors wish to thank Prof. Dr. Rapeeporn Ruangchuay and the Surat Thani Coastal Fisheries Research and Development Center for kindly supporting the Gracilaria samples. Special thanks to anonymous reviewers whose remarks helped to improve this paper.

References

  1. Anonymous (2017a) Energy situation in Thailand: January-December 2017. Department of Alternative Energy Development and Efficiency, Ministry of Energy, Bangkok, 5 pp (in Thai)Google Scholar
  2. Anonymous (2017b) Report of ethanol situation price in Thailand: quarter 4/2017. Bank of Thailand, Bangkok, 8 pp (in Thai)Google Scholar
  3. AOAC International (2005) Official methods of analysis of AOAC International, 18th edn. AOAC International, GaithersburgGoogle Scholar
  4. Benjama O, Masniyom P (2012) Biochemical composition and physicochemical properties of two red seaweeds (Gracilaria fisheri and G. tenuistipitata) from the Pattani Bay in southern Thailand. Songklanakarin. J Sci Technol 34:223–230Google Scholar
  5. Chen Y-W, Lee H-V, Juan J-C, Phang S-M (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219CrossRefGoogle Scholar
  6. Chirapart A, Munkit J, Lewmanomont K (2006) Changes in yield and quality of agar from the agarophytes, Gracilaria fisheri and G. tenuistipitata var. liui cultivated in earthen ponds. Kasetsart J (Nat Sci) 40:529–540Google Scholar
  7. Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N (2014) Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26:979–986CrossRefGoogle Scholar
  8. Cho H, Ra C-H, Kim S-K (2014) Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts. J Microbiol Biotechnol 24:264–269CrossRefGoogle Scholar
  9. Chynoweth DP (2002) Review of biomethane from marine biomass. A report prepared for Tokyo Gas Company. In: LtdGoogle Scholar
  10. Ciepiela GA, Godlewska A, Jankowska J (2016) The effect of seaweed Ecklonia maxima extract and mineral nitrogen on fodder grass chemical composition. Environ Sci Pollut Res 23:2301–2307CrossRefGoogle Scholar
  11. Craigie JS, Wen ZC, van der Meer JP (1984) Interspecific, intraspecific and nutritionally determined variations in the composition of agars from Gracilaria spp. Bot Mar 27:55–61CrossRefGoogle Scholar
  12. Feng D, Liu H, Li F, Jiang P, Qin S (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chin J Oceanol Limnol 29:1243–1248CrossRefGoogle Scholar
  13. Goering HK, Van Soest PJ (1970) Forage fiber analysis (apparatus, reagent, procedures and some applications). Agric. Handbook, No. 379, ARS-USDA, Washington, DCGoogle Scholar
  14. Graciela SD, Elisabete B, João ON, Sidney P, Sergio OL (2011) Gross chemical profile and calculation of nitrogen-to-protein conversion factors for five tropical seaweed. Am J Plant Sci 2:287–296CrossRefGoogle Scholar
  15. Herrera A, Téllez-Luis SJ, González-Cabriales JJ, Ramı́rez M, Vázquez JA (2004) Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J Food Eng 63:103–109CrossRefGoogle Scholar
  16. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198CrossRefGoogle Scholar
  17. Hong I-K, Jeon H, Lee S-B (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20:2687–2691CrossRefGoogle Scholar
  18. Jeong GT, Park DH (2010) Production of sugar and levulinic acid from marine biomass Gelidium amansii. Appl Biochem Biotechnol 161:41–52CrossRefGoogle Scholar
  19. Jiang R, Ingle KN, Golberg A (2016) Macroalgae (seaweed) for liquid transportation biofuel production: what is next? Algal Res 14:48–57CrossRefGoogle Scholar
  20. Kim JK, Yarish C (2014) Development of a sustainable land-based Gracilaria cultivation system. Algae 29:217–225CrossRefGoogle Scholar
  21. Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1–13CrossRefGoogle Scholar
  22. Kim SW, Hong C-H, Jeon S-W, Shin H-J (2015) High-yield production of biosugars from Gracilaria verrucosa by acid and enzymatic hydrolysis processes. Bioresour Technol 196:634–641CrossRefGoogle Scholar
  23. Lahaye M, Rochas C, Yaphe W (1986) A new procedure for determining the heterogeneity of agar polymers in the cell wall of Gracilaria spp. (Gracilariaceae, Rhodophyta). Can J Bot 64:579–585CrossRefGoogle Scholar
  24. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524CrossRefGoogle Scholar
  25. McDermid KJ, Stuercke B, Balazs GH (2007) Nutritional composition of marine plants in the diet of the green sea turtle (Chelonia mydas) in the Hawaiian Islands. Bull Mar Sci 81:55–71Google Scholar
  26. Meinita NDM, Jeong GT, Hong YK (2012) Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst Eng 35:123–128CrossRefGoogle Scholar
  27. Meinita MDN, Marhaeni B, Winanto T, Setyaningsih D, Hong Y-K (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114CrossRefGoogle Scholar
  28. Munier M, Dumay J, Morançais M, Jaouen P, Fleurence J (2013) Variation in the biochemical composition of the edible seaweed Grateloupia turuturu Yamada harvested from two sampling sites on the Brittany Coast (France): the influence of storage method on the extraction of the seaweed pigment R-phycoerythrin. J Chem 2013:1–8CrossRefGoogle Scholar
  29. Narasimman S, Murugaiyan K (2012) Proximate composition of certain selected marine macro-algae form Mandapam coastal region (Gulf of Mannar), southeast coast of Tamil Nadu. Int J Pharm Biol Arch 3:918–921Google Scholar
  30. Norziah MH, Ching CY (2000) Nutritional composition of edible seaweed Gracilaria changii. Food Chem 68:69–76CrossRefGoogle Scholar
  31. Nunraksa N, Praiboon J, Puangsombat P, Chirapart A (2015) Effects of hydrochloric acid pretreatment on ethanol yield of the agarophyte, Gracilaria tenuistipitata. KU Fish Res Bull 39(1):38–47Google Scholar
  32. Pimentel D, Marklein A, Toth MA, Karpoff M, Paul GS, McCormack R, Kyriazis J, Krueger T (2008) Biofuel impacts on world food supply: use of fossil fuel, land and water resources. Energies 1:41–78CrossRefGoogle Scholar
  33. Praiboon J, Chirapart A, Akakabe A, Bhumibhamond O, Kajiwara T (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 32(suppl 1):11–17CrossRefGoogle Scholar
  34. Ra CH, Choi JG, Kang C-H, Sunwoo IY, Jeong G-T, Kim S-K (2015) Thermal acid hydrolysis pretreatment, enzymatic saccharification and ethanol fermentation from red seaweed, Gracilaria verrucosa. Microbiol Biotechnol Lett 43:9–15CrossRefGoogle Scholar
  35. Raspolli Galletti, AM, Antonetti C, De Luise V, Licursi D, di Nasso NN (2012) Levulinic acid production from waste biomass. BioResources 7:1824–1835Google Scholar
  36. Robic A, Sassi J-F, Dion P, Lerat Y, Lahaye M (2009) Seasonal variability of physico-chemical and rheological properties of ulvan from two Ulva species (Chlorophyta) of Brittany coast. J Phycol 45:962–973CrossRefGoogle Scholar
  37. Ruangchuay R, Lueangthuvapranit C, Nuchaikaew M (2010) Cultivation of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) in abandoned shrimp ponds along the coast of Pattani Bay, southern Thailand. Algal Resour 3:185–192Google Scholar
  38. Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bio Resour 2:472–499Google Scholar
  39. Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217CrossRefGoogle Scholar
  40. Wackett PL (2011) Engineering microbes to produce biofuels. Curr Opin Biotechnol 22:388–393CrossRefGoogle Scholar
  41. Wi SG, Kim HJ, Mahadevan SA, Yang D-J, Bae H-J (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660CrossRefGoogle Scholar
  42. Yarnpakdee S, Benjakul S, Kingwascharapong P (2015) Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll 51:217–226CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Fishery Biology, Faculty of FisheriesKasetsart UniversityBangkokThailand

Personalised recommendations