Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 665–682 | Cite as

Geographic variation in biochemical and physiological traits of the red seaweeds Chondracanthus chamissoi and Gelidium lingulatum from the south east Pacific coast

  • Karina VélizEmail author
  • Nancy Chandía
  • Ulf Karsten
  • Carlos Lara
  • Martin Thiel
Article

Abstract

Diverse phenotypic characteristics have evolved in seaweeds to cope with environmental stress, but these traits can vary among populations of the same species especially if these are distributed along environmental gradients. In this study, natural populations of the carrageenophyte Chondracanthus chamissoi and the agarophyte Gelidium lingulatum from a latitudinal gradient along the Chilean coast (between 20° S and 41° S) were compared. We determined physiological and biochemical traits in field and culture samples. Sulfated polysaccharide contents ranged from 15.4 to 52.7% dry weight (DW) in C. chamissoi and from 10.9 to 25.1% DW in G. lingulatum. Carrageenan amounts were higher in gametophytes than tetrasporophytes and were also, depending on life cycle phase, negatively correlated with the geographic variation of temperature, photosynthetically active radiation (PAR), and chlorophyll a (Chl a), whereas agar showed no significant correlation with these variables. The UV-absorbing mycosporine-like amino acids (MAAs) shinorine and palythine in both species ranged from 0.8 to 6.8 mg g−1 DW and these contents were positively correlated to PAR and Chl a levels at the sampling site. In C. chamissoi variation among populations in their photosynthetic characteristics, pigment concentrations, antioxidant capacity, and MAA contents were persistent after acclimation under common-garden conditions, suggesting ecotypic differentiation in this species. Contrary, G. lingulatum seems to have a more generalist strategy because differences after cultivation were observed only in some photosynthetic parameters and phycobiliprotein concentration. This study confirms that intraspecific differences in phenotypic traits along the same geographic area are strongly dependent on species and life cycle phases.

Keywords

Rhodophyta Carrageenans Agar Mycosporine-like amino acids Ecotypes Chile 

Notes

Acknowledgements

We would like to thank the Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA-UCN) for providing laboratory facilities. We are grateful to Samanta García and David Yañez for their collaboration in laboratory activities, as well as to David Jofré Madariaga, Oscar Pino, and Felipe Saéz for their help in the collection of field samples.

Funding information

Financial support for this study was provided by Ph.D Grant CONICYT-Chile 21130402 and FIAC2-UCN1104 to K.V., Fondecyt 1131082 to M.T., and FIC-R BIP 30137720-0 to N.C.; C.L. acknowledges support from the Millennium Nucleus Center for the Study of Multiple Drivers on Marine Socio-Ecological Systems (MUSELS) funded by MINECON NC120086.

References

  1. Barufi BJ, Korbee N, Oliveira MC, Figueroa FL (2011) Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J Appl Phycol 23:457–466CrossRefGoogle Scholar
  2. Beer S, Eshel A (1985) Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae. Aust J Mar Freshw Res 36:785–792CrossRefGoogle Scholar
  3. Bird KT (1988) Agar production and quality from Gracilaria sp. strain G-16: effects of environmental factors. Bot Mar 31:33–39CrossRefGoogle Scholar
  4. Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. In: Amils R, Ellis-Evans C, Hinghofer-Szalkay H (eds) Life in extreme environments. Springer, Dordrecht, pp 187–212Google Scholar
  5. Bischof K, Steinhoff FS (2012) Impacts of ozone stratospheric depletion and solar UVB radiation on seaweeds. In: Wiencke C, Bischof K (eds) Seaweed biology novel insights into ecophysiology, ecology and utilization. Springer, Berlin, pp 433–467Google Scholar
  6. Boedeker C, Karsten U (2005) The occurrence of mycosporine-like amino acids in the gametophytic and sporophytic stages of Bangia (Bangiales, Rhodophyta). Phycologia 44:403–408CrossRefGoogle Scholar
  7. Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1635–1650PubMedPubMedCentralCrossRefGoogle Scholar
  8. Boyer JN, Kelble CR, Ortner PB, Rudnick DT (2009) Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol Appl 95:556–567Google Scholar
  9. Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Biotechnol 28:25–30Google Scholar
  10. Bulboa C, Macchiavello J, Oliveira E, Véliz K (2008) Growth rate differences between four Chilean populations of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales). Aquac Res 39:1550–1555CrossRefGoogle Scholar
  11. Buschmann AH, Correa JA, Westermeier R, Paredes MA, Aedo D, Potin P, Aroca G, Beltrán J, Hernández-González MC (2001) Cultivation of Gigartina skottsbergii (Gigartinales, Rhodophyta): recent advances and challenges for the future. J Appl Phycol 13:255–266CrossRefGoogle Scholar
  12. Calderón M, Ramírez ME, Bustamante D (2010) Notas sobre tres especies de Gigartinaceae (Rhodophyta) del litoral peruano. Rev Peru Biol 17:115–121Google Scholar
  13. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carrington E, Grace SP, Chopin T (2001) Life history phases and the biomechanical properties of the red alga Chondrus crispus (Rhodophyta). J Phycol 37:699–704CrossRefGoogle Scholar
  15. Chang L, Sui Z, Feng F, Zhou W, Wang J, Kang KH, Zhang S, Ma J (2014) Relationship between gene expression of UDP-glucose pyrophosphorylase and agar yield in Gracilariopsis lemaneiformis (Rhodophyta). J Appl Phycol 26:2435–2441CrossRefGoogle Scholar
  16. Chopin T, Kerin BF, Mazerolle R (1999) Phycocolloid chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: a review and current developments using Fourier transform infrared diffuse reflectance spectroscopy. Phycol Res 47:167–188CrossRefGoogle Scholar
  17. Chopin T, Wagey BT (1999) Factorial study of the effects of phosphorus and nitrogen enrichments on nutrient and carrageenan content in Chondrus crispus (Rhodophyceae) and on residual nutrient concentration in seawater. Bot Mar 42:23–31CrossRefGoogle Scholar
  18. Collén PN, Camitz A, Hancock RD, Viola R, Pedersén M (2004) Effect of nutrient deprivation and resupply on metabolites and enzyme related to carbon allocation in Gracilaria tenuistipitata (Rhodophyta). J Phycol 40:305–314CrossRefGoogle Scholar
  19. Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–257Google Scholar
  20. Dodgson K, Price R (1962) A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  22. Enríquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of sea grasses and macroalgae. In: Suggett DJ, Borowitzka MA, Prásil O (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208CrossRefGoogle Scholar
  23. Eswaran K, Suba Rao PV, Mairh OP (2001) Impact of ultraviolet-B radiation on a marine red alga Kappaphycus alvarezii. Indian J Mar Sci 30:105–107Google Scholar
  24. Ficko-Blean E, Hervé C, Michel G (2015) Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspect Phycology 2:51–64CrossRefGoogle Scholar
  25. Fournet I, Zinoun M, Deslandes E, Diouris M, Floc’h JY (1999) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur J Phycol 34:125–130CrossRefGoogle Scholar
  26. Franklin LA, Kräbs G, Kuhlenkamp R (2001) Blue light and UV radiation control the synthesis of mycosporine-like amino acids in Chondrus crispus (Florideophyceae). J Phycol 37:257–270CrossRefGoogle Scholar
  27. Freile-Pelegrín Y, Robledo D, Armisén R, García-Reina G (1996) Seasonal changes in agar characteristics of two populations of Pterocladia capillacea in Gran Canaria, Spain. J Appl Phycol 8:239–246CrossRefGoogle Scholar
  28. Gerard VA (1988) Ecotypic differentiation in light-related traits of the kelp Laminaria saccharina. Mar Biol 97:25–36CrossRefGoogle Scholar
  29. Goulard F, Diouris M, Quere G, Deslandes E, Floc'h JY (2001) Salinity effects on NDP-sugar, floridoside, starch and carrageenan yield, and UDP-glucose-pyrophosphorylase and epimerase activities of cultivated Solieria chordalis. J Plant Physiol 158:1387–1394CrossRefGoogle Scholar
  30. Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727CrossRefGoogle Scholar
  31. Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–321CrossRefGoogle Scholar
  32. Hernández K, Yannicelli B, Montecinos A, Ramos M, González HE, Daneri G (2012) Temporal variability of incidental solar radiation and modulating factors in a coastal upwelling area (36°S). Prog Oceanogr 92-95:18–32CrossRefGoogle Scholar
  33. Hoffmann A, Santelices B (1997) Flora marina de Chile central. Ediciones Universidad Católica del Chile, Santiago, Chile. 434 ppGoogle Scholar
  34. Hoyer K, Karsten U, Sawall T, Wiencke C (2001) Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and development stages. Mar Ecol Prog Ser 211:117–129CrossRefGoogle Scholar
  35. Hoyer K, Karsten U, Wiencke C (2002) Induction of sunscreen compounds in Antarctic macroalgae by different radiation conditions. Mar Biol 141:619–627CrossRefGoogle Scholar
  36. Huovinen P, Gómez I, Figueroa FL, Ulloa N, Morales V, Lovengreen C (2004) Ultraviolet-absorbing mycosporine-like amino acids in red macroalgae from Chile. Bot Mar 47:21–29CrossRefGoogle Scholar
  37. Huovinen P, Matos J, Pinto IS, Figueroa FL (2006) The role of ammonium in photoprotection against high irradiance in the red alga Grateloupia lanceola. Aquat Bot 84:308–316CrossRefGoogle Scholar
  38. Hurtado MA, Manzano-Sarabia M, Hernández-Garibay E, Pacheco-Ruíz I, Zertuche-González JA (2011) Latitudinal variations of the yield and quality of agar from Gelidium robustum (Gelidiales, Rhodophyta) from the main commercial harvest beds along the western coast of the Baja California peninsula, Mexico. J Appl Phycol 23:727–734CrossRefGoogle Scholar
  39. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jouanneau D, Boulenguer P, Mazoyer J, Hebert W (2011) Hybridity of carrageenans water- and alkali-extracted from Chondracanthus chamissoi, Mazzaella laminarioides, Sarcothalia crispata, and Sarcothalia radula. J Appl Phycol 23:105–114CrossRefGoogle Scholar
  41. Karsten U, Sawall T, Wiencke C (1998a) A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol Res 46:271–279CrossRefGoogle Scholar
  42. Karsten U, Sawall T, Hanelt D, Bischof K, Figueroa FL, Flores-Moya A, Wiencke U (1998b) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm-temperate regions. Bot Mar 41:443–453CrossRefGoogle Scholar
  43. Karsten U, Wiencke U (1999) Factors controlling the formation of UV-absorbing mycosporine-like amino acids in the marine red alga Palmaria palmata from Spitsbergen (Norway). J Plant Physiol 155:407–415CrossRefGoogle Scholar
  44. Karsten U, Friedl T, Schumann R, Hoyer K, Lembcke S (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J Phycol 41:557–566CrossRefGoogle Scholar
  45. Karsten U (2008) Defenses strategies of algae and cyanobacteria against solar UVR. In: Amsler CD (ed) Algal chemical ecology. Springer, Berlin, pp 273–296CrossRefGoogle Scholar
  46. Kitzing C, Pröschold T, Karsten U (2014) UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. Microb Ecol 67:327–340PubMedCrossRefGoogle Scholar
  47. Kitzing C, Karsten U (2015) Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). Eur J Phycol 50:279–287CrossRefGoogle Scholar
  48. Korbee N, Huovinen P, Figueroa FL, Aguilera J, Karsten U (2005a) Availability of ammonium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar Biol 146:654–654CrossRefGoogle Scholar
  49. Korbee N, Figueroa FL, Aguilera J (2005b) Effect of light quality on the accumulation of photosynthetic pigments, proteins and mycosporine-like amino acids in the red alga Porphyra leucosticta (Bangiales, Rhodophyta). J Photochem Photobiol B 80:71–78PubMedCrossRefGoogle Scholar
  50. Lahaye M (2001) Developments on gelling algal galactans, their structure and physico-chemistry. J Appl Phycol 13:173–184CrossRefGoogle Scholar
  51. Lee WK, Lim YY, Leow ATC, Namasivayam P, Abdullah JO, Ho CL (2017a) Biosynthesis of agar in red seaweeds: a review. Carbohyd Polym 164:23–30CrossRefGoogle Scholar
  52. Lee WK, Lim YY, Leow ATC, Namasivayam P, Abdullah JO, Ho CL (2017b) Factors affecting yield and gelling properties of agar. J Appl Phycol 29:1527–1540CrossRefGoogle Scholar
  53. López BA, Tellier F, Retamal-Alarcón JC, Pérez-Araneda K, Fierro AO, Macaya EC, Tala F, Thiel M (2017) Phylogeography of two intertidal seaweeds, Gelidium lingulatum and G. rex (Rhodophyta: Gelidiales), along the south East Pacific: patterns explained by rafting dispersal? Mar Biol.  https://doi.org/10.1007/s00227-017-3219-5
  54. Macler BA (1986) Regulation of carbon flow by nitrogen and light in the red alga Gelidium coulteri. Plant Physiol 82:136–141PubMedPubMedCentralCrossRefGoogle Scholar
  55. Macler BA (1988) Salinity effects on photosynthesis, carbon allocation, and nitrogen assimilation in the red alga Gelidium coulteri. Plant Physiol 88:690–694PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mariani P, Tolomio C, Baldan B, Braghetta P (1990) Cell wall ultrastructure and cation localization in some benthic marine algae. Phycologia 29:253–262CrossRefGoogle Scholar
  57. Matsuhiro B, Urzúa CC (1991) Agars from Chilean Gelidiaceae. Hydrobiologia 221:149–156CrossRefGoogle Scholar
  58. Matsuhiro B, Conte AF, Damonte EB, Kolender AA, Matulewicz MC, Mejías EG, Pujol CA, Zúñiga EA (2005) Structural analysis and antiviral activity of a sulfated galactan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta). Carbohydr Res 340:2392–2402PubMedCrossRefGoogle Scholar
  59. Mercado JM, Jiménez C, Niell FX, Figueroa FL (1996) Comparison of methods for measuring light absorption by algae and their application to the estimation of the package effect. Sci Mar 60:39–45Google Scholar
  60. Molyneux P (2004) The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. J Sci Technol 26:211–219Google Scholar
  61. Navarro NP, Figueroa FL, Korbee N (2017) Mycosporine-like amino acids vs carrageenan yield in Mazzaella laminarioides (Gigartinales; Rhodophyta) under high and low UV solar irradiance. Phycologia 56:570–578CrossRefGoogle Scholar
  62. O'Reilly JE, Maritorena S, O'Brien MC, Siegel DA, Toole D, Menzies D, Smith RC, Mueller JL, Mitchell BG, Kahru M, Chavez FP, Strutton P, Cota GF, Hooker SB, McClain CR, Carder KL, Muller-Karger F, Harding L, Magnuson A, Phinney D, Moore GF, Aiken J, Arrigo KR, Letelier R, Culver M (2000) SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, vol. 11, NASA Technical Memorandum - SeaWIFS Postlaunch. Technical Report Series, pp 1–49Google Scholar
  63. Pattanaik B, Roleda MY, Schumann R, Karsten U (2008) Isolate-specific effects of ultraviolet radiation on photosynthesis, growth and mycosporine-like amino acids in the microbial mat-forming cyanobacterium Microcoleus chthonoplastes. Planta 227:907–916PubMedCrossRefGoogle Scholar
  64. Pereira L, Mesquita JF (2004) Population studies and carrageenan properties of Chondracanthus teedei var. lusitanicus (Gigartinaceae, Rhodophyta). J Appl Phycol 16:369–383CrossRefGoogle Scholar
  65. Pereira L, Critchley AT, Amado AM, Ribeiro-Claro P (2009) A comparative analysis of phycocolloids produced by underutilized versus industrially utilized carrageenophytes (Gigartinales, Rhodophyta). J Appl Phycol 21:599–605CrossRefGoogle Scholar
  66. Pereira L, van de Velde F (2011) Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohyd Polym 84:614–623CrossRefGoogle Scholar
  67. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701Google Scholar
  68. Ramírez ME, Santelices B (1991) Catálogo de las algas marinas bentónicas de la Costa del Pacífico Temperado de Sudamérica. Monografías Biológicas 5. Pontificia Universidad Católica de Chile, SantiagoGoogle Scholar
  69. Ramos-Rodríguez A, Lluch-Cota DB, Lluch-Cota SE, Trasviña-Castro A (2012) Sea surface temperature anomalies, seasonal cycle and trend regimes in the eastern Pacific coast. Ocean Sci 8:81–90CrossRefGoogle Scholar
  70. Reis RP, Yoneshigue-Valentin Y, dos Santos CP (2008) Spatial and temporal variation of Hypnea musciformis carrageenan (Rhodophyta, Gigartinales) from natural beds in Rio de Janeiro state, Brazil. J Appl Phycol 20:1–8CrossRefGoogle Scholar
  71. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535CrossRefGoogle Scholar
  72. Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25:279–293PubMedCrossRefGoogle Scholar
  73. Tala F, Velásquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Biol Ecol 483:31–41CrossRefGoogle Scholar
  74. Tapia FJ, Largier JL, Castillo M, Wieters EA, Navarrete SA (2014) Latitudinal discontinuity in thermal conditions along the nearshore of Central-Northern Chile. PLoS One 9(10):e110841PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tasende MG, Cid M, Fraga MI (2012) Spatial and temporal variations of Chondrus crispus (Gigartinaceae, Rhodophyta) carrageenan content in natural populations from Galicia (NW Spain). J Appl Phycol 24:941–951CrossRefGoogle Scholar
  76. Tasende MG, Cid M, Fraga MI (2013) Qualitative and quantitative analysis of carrageenan content in gametophytes of Mastocarpus stellatus (Stackhouse) Guiry along Galician coast (NW Spain). J Appl Phycol 25:587–596CrossRefGoogle Scholar
  77. Torres PB, Chow F, Ferreira MJ, dos Santos DYAC (2016) Mycosporine-like amino acids from Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) and its variation under high light. J Appl Phycol 28:2035–2040CrossRefGoogle Scholar
  78. van de Velde F (2008) Structure and function of hybrid carrageenans. Food Hydrocoll 22:727–734CrossRefGoogle Scholar
  79. Véliz K, Chandía N, Rivadeneira M, Thiel M (2017) Seasonal variation of carrageenans from Chondracanthus chamissoi with a review of variation in the carrageenan contents produced by Gigartinales. J Appl Phycol 29:3139–3150CrossRefGoogle Scholar
  80. Vernet M, Diaz S, Fuenzalida H, Camilion C, Booth CR, Cabrera S, Casiccia C, Deferrari G, Lovengreen C, Paladini A, Pedroni J, Rosales A, Zagarese H (2009) Quality of UVR exposure for different biological systems along a latitudinal gradient. Photochem Photobiol Sci 8:1329–1345PubMedCrossRefGoogle Scholar
  81. Wang P, Zhao X, Lv Y, Li M, Liu X, Li G, Yu G (2012) Structural and compositional characteristics of hybrid carrageenans from red algae Chondracanthus chamissoi. Carbohyd Polym 89:914–919CrossRefGoogle Scholar
  82. Yang MY, Macaya EC, Kim MS (2015) Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta). Bot Mar 58:103–113Google Scholar
  83. Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose and 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13:143–148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Doctorado en Biología y Ecología AplicadaUniversidad Católica del NorteCoquimboChile
  2. 2.Laboratorio de Moléculas BioactivasUniversidad Católica del NorteCoquimboChile
  3. 3.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  4. 4.Institute of Biological Sciences, Applied Ecology and PhycologyUniversity of RostockRostockGermany
  5. 5.Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS)Universidad Bernardo O’HigginsSantiagoChile
  6. 6.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)CoquimboChile
  7. 7.Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI)CoquimboChile

Personalised recommendations