Advertisement

Journal of Applied Phycology

, Volume 30, Issue 6, pp 3311–3317 | Cite as

Ethanol production from Gracilaria fisheri using three marine epiphytic yeast species

  • Surichay Rattanasaensri
  • Nattawarit Nunraksa
  • Narongrit Muangmai
  • Jantana Praiboon
  • Anong Chirapart
8th Asian Pacific Phycological Forum

Abstract

Biofuels, especially bioethanol, are renewable resources that can supplement fossil fuel use. Gracilaria fisheri is a major cultivated seaweed in Thailand and can be a potential source of bioethanol due to its high polysaccharide content. Marine yeasts collected from the surface of seaweed are poorly known, but could be a source of fermenting yeast when using seaweeds. We collected samples of G. fisheri cultivated in shrimp pond effluent from southern Thailand and isolated yeasts from their surface. Molecular methods (ITS2 sequence) were used to identify the species and ethanol production was measured using algal powder hydrolyzed with 1 M of H2SO4 as a substrate. These species (Candida parapsilosis, Candida glabrata, Kodamaea ohmeri) were identify and used in fermentation experiment. These three yeast species produced different amounts of ethanol (per gram sugars) with C. glabrata producing the highest amount (2.5 × 10−2 g ethanol g−1 sugars) and C. parapsilosis (1.70 × 10−2 g ethanol g−1 sugars) the lowest. This study revealed that epiphytic yeasts isolated from G. fisheri have potential for use in the production of ethanol.

Keywords

Gracilaria Ethanol production Epiphytic yeast Candida parapsilosis Candida glabrata Kodamaea ohmeri 

Notes

Acknowledgments

Special thanks to Prof. Dr. Giuseppe C. Zuccarello and anonymous reviewers whose remarks helped to improve this paper.

Funding information

This research was supported by The Graduate School, Kasetsart University, for research scholarship and works were partly done under a research project granted by Kasetsart University Research and Development.

References

  1. Azhara MSH, Abdulla R, Jamboa SA, Marbawia H, Gansaua JA, Faika AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61Google Scholar
  2. Chirapart A, Lewmanomont K (2004) Growth and production of Thai agarophyte cultured in natural pond using the effluent seawater from shrimp culture. Hydrobiologia 512:117–126CrossRefGoogle Scholar
  3. Chirapart A, Praiboon J, Puangsombat P, Pattanapon C, Nunraksa N (2014) Chemical composition and ethanol production potential of Thai seaweed species. J Appl Phycol 26:979–986CrossRefGoogle Scholar
  4. Cho Y, Kim H, Kim S-K (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36:713–719CrossRefGoogle Scholar
  5. Ciardo DE, Schӓr G, Bӧttger EC, Altwegg M, Bosshard PP (2006) Internal transcribed spacer sequencing versus biochemical profiling for identification of medically important yeasts. J Clin Microbiol 44:77–84CrossRefGoogle Scholar
  6. Critchley AT, Ohno M (1998) Seaweed resources of the world. Kanagawa International fisheries training center, Japan International Cooperation Agency (JICA)Google Scholar
  7. Francis MM, Webb V, Zuccarello GC (2016) Marine yeast biodiversity on seaweeds in New Zealand waters. NZ J Bot 54:30–47CrossRefGoogle Scholar
  8. Furlan SA, Castro HF (2001) Xylitol production by Candida parapsilosis under fed-batch culture. Braz Arch Biol Technol 44:125–128CrossRefGoogle Scholar
  9. Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254CrossRefGoogle Scholar
  10. Jang J-S, Cho YK, Jeong G-T, Kim S-K (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18CrossRefGoogle Scholar
  11. Jasman J, Prijambada ID, Hidayat C, Widianto D (2012) Selection of yeast strains for ethanol fermentation of glucose-fructose-sucrose mixture. Indonesian J Biotechnol 17:114–120CrossRefGoogle Scholar
  12. Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469CrossRefGoogle Scholar
  13. Kostas ET, White DA, Du C, Cook DJ (2016) Selection of yeast strains for bioethanol production from UK seaweeds. J Appl Phycol 28:1427–1441CrossRefGoogle Scholar
  14. Kumar A, Singh LK, Ghosh S (2009) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipites. Bioresour Technol 100:3293–3297CrossRefGoogle Scholar
  15. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour Technol 135:150–156CrossRefGoogle Scholar
  16. Laima C, Padprem S, Treewitthayanurak S, Pakdeechote P, Phajee W, Pattamapongsa T, Jitpranee W, Chaturawittawong W, Boottae N, Srimongkol T, Jongheagsakul T, Phungluang M, Homsuwan S, Tantiwisarn V, Kunathai B (2016) Energy statistics of Thailand 2016. Energy Policy and Planning Office, Ministry of Energy, Bangkok, p 330Google Scholar
  17. Meinita MDN, Marhaeni B, Winanto T, Jeong G-T, Khan MNA, Hong Y-K (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25:1957–1961CrossRefGoogle Scholar
  18. Meinita MDN, Marhaeni B, Winanto T, Setyaningsih D, Hong Y-K (2015) Catalytic efficiency of sulfuric and hydrochloric acids for the hydrolysis of Gelidium latifolium (Gelidiales, Rhodophyta) in bioethanol production. J Ind Eng Chem 27:108–114CrossRefGoogle Scholar
  19. Meinita MDN, Marhaeni B, Hong Y-K, Jeong G-T (2017) Enzymatic saccharification of agar waste from Gracilaria verrucosa and Gelidium latifolium for bioethanol production. J Appl Phycol 29:3201–3209CrossRefGoogle Scholar
  20. Mosier AC, Murray AE, Fritsen CH (2006) Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiol Ecol 59:274–288CrossRefGoogle Scholar
  21. Mukhtar K, Asgher M, Afghan S, Hussain K, Zia-ul-Hussnain S (2010) Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. Biomed Biotechnol 1:1–5Google Scholar
  22. Musa N, Lee SW (2008) Bacteria attached on cultured seaweed Gracilaria changii at Mengabang Telipot, Terengganu. Acad J Plant Sci 1:1–4Google Scholar
  23. Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92:763–768CrossRefGoogle Scholar
  24. Mutripah S, Meinita MDN, Kang J-Y, Jeong G-T, Susanto A, Prabowo RE, Hong Y-K (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26:687–693CrossRefGoogle Scholar
  25. Obata O, Akunna J, Bockhorn H, Walker G (2016) Ethanol production from brown seaweed using non-conventional yeasts. Bioethanol 2:134–145CrossRefGoogle Scholar
  26. Owusu PA, Asumadu-Sarkodie S (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng 3:1–14Google Scholar
  27. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ (2012) Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour Technol 108:83–88CrossRefGoogle Scholar
  28. Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200CrossRefGoogle Scholar
  29. Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T (2006) Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. Sci Asia 32:11–17CrossRefGoogle Scholar
  30. Preziosi-Belloy L, Nolleau V, Navarro JM (1997) Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis. Enzym Microb Technol 21:124–129CrossRefGoogle Scholar
  31. Ra CH, Jeong G, Shin MK, Kim S (2013a) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour Technol 140:421–425CrossRefGoogle Scholar
  32. Ra CH, Lee HJ, Shin MK, Kim S-K (2013b) Bioethanol production from seaweed Gelidium amansii for separated hydrolysis and fermentation (SHF). KSBB J 28:282–286CrossRefGoogle Scholar
  33. Ruangchuay R, Lueangthuvapranit C, Nuchaikaew M (2010) Cutivation of Gracilaria fisheri (Xia & Abbott) Abbott, Zhang & Xia (Gracilariales, Rhodophyta) in abandoned shrimp ponds along the coast of Pattani Bay, southern Thailand. Algal Resour 3:185–192Google Scholar
  34. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  35. Vairappan CS (2006) Seasonal occurrences of epiphytic algae on the commercially cultivation red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 18:611–627CrossRefGoogle Scholar
  36. Watanabe I, Nakamura T, Shima J (2009) Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. J Biosci Bioeng 107:379–382CrossRefGoogle Scholar
  37. Watanabe I, Nakamura T, Shima J (2010) Strategy for simultaneous saccharification and fermentation using a respiratory-deficient mutant of Candida glabrata for bioethanol production. J Biosci Bioeng 110:176–179CrossRefGoogle Scholar
  38. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Algal Bioresources Research Center, Department of Fishery Biology, Faculty of FisheriesKasetsart UniversityBangkokThailand

Personalised recommendations