Journal of Applied Phycology

, Volume 30, Issue 6, pp 3131–3151 | Cite as

Metabolomic profiles of tropical Chlorella species in response to physiological changes during nitrogen deprivation

  • Vejeysri VelloEmail author
  • Wan-Loy Chu
  • Phaik-Eem Lim
  • Nazia Abdul Majid
  • Siew-Moi PhangEmail author
8th Asian Pacific Phycological Forum


Chlorella species are known to be potential algal candidates for biodiesel production due to their ability to store lipids and their natural metabolic versatility. This study assessed the photosynthetic performance, biochemical composition, and metabolomic profiles of tropical Chlorella UMACC050 harvested from different growth phases in batch culture, grown under nitrogen-replete, and nitrogen-depleted conditions. Physiological data suggested that growth and photosynthetic efficiency were affected during nitrogen deprivation. Nitrogen deprivation resulted in a decrease in biomass productivity and an increase of lipid content. Nitrogen-depletion resulted in an increase in saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA), especially C16:0, C18:0, and C18:1, at the expense of polyunsaturated fatty acids (PUFA). Changes in the metabolomic profiles suggested that there was nitrogen assimilation from proteins and photosynthetic machinery, together with repartitioning of carbon into carbohydrates and lipids in response to nitrogen depletion. Overall, our results expand the current understanding of metabolomics of Chlorella species and provide valuable insights into their lipid accumulation during nitrogen deprivation, which is important for optimization of lipid productivity in the tropical environment.


Algae Biodiesel Chlorophyta Chlorella Fatty acid Nitrogen Metabolomics 



The first author is grateful to the University of Malaya Bright Spark Scheme Program for the financial support given. Special thanks to collaborator from National University of Singapore (NUS), Dr. Sanjay Swarup, Dr. Peter Imre Benke, Dr. Umashankar Shivshankar, and Vinay M.C.S. Kumar for the advice and technical support.

Funding information

The project was funded by Postgraduate Research Fund (Ref: PS301/2010B and PV032/2011B), Malaysian Palm Oil Board (MPOB, Ref: 55-02-03-1054), and AMIC (Algae Bioenergy, Ref: PV001-2013).

Supplementary material

10811_2018_1504_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 66 kb)
10811_2018_1504_MOESM2_ESM.docx (1.4 mb)
ESM 2 (DOCX 1442 kb)
10811_2018_1504_MOESM3_ESM.docx (64 kb)
ESM 3 (DOCX 64 kb)
10811_2018_1504_MOESM4_ESM.docx (114 kb)
ESM 4 (DOCX 114 kb)


  1. Abida H, Dolch LJ, Mei C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rebeille F, Petroutsos D, Jouhet J, Marechal E (2015) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol 167:118–136PubMedGoogle Scholar
  2. Al Ahmad M, Al-Zuhair S, Hilal-Alnaqbi A, Mustafa F (2017) Visualization and quantification of oil in single microalgal cells. J Appl Phycol 29:1195–1202Google Scholar
  3. Allen JW, DiRusso CC, Black PN (2014) Triglyceride quantification by catalytic saturation and LC–MS/MS reveals an evolutionary divergence in regioisometry among green microalgae. Algal Res 5:23–31Google Scholar
  4. Allen JW, DiRusso CC, Black PN (2015) Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Res 10:110–120Google Scholar
  5. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association (APHA), Washington, DCGoogle Scholar
  6. Araujo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR (2011) Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci 16(9):489–498PubMedGoogle Scholar
  7. Aremu AO, Masondo NA, Molnár Z, Stirk WA, Ördög V, Van Staden J (2016) Changes in phytochemical content and pharmacological activities of three Chlorella strains grown in different nitrogen conditions. J Appl Phycol 28:149–159Google Scholar
  8. Barati B, Lim PE, Gan SY, Poong SW, Phang SM, Beardall J (2018) Effect of elevated temperature on the physiological responses of marine Chlorella strains from different latitudes. J Appl Phycol 30:1–13Google Scholar
  9. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  10. Boudiere L, Michaud M, Petroutsos D, Rebeille F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Marechal E (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta 1837:470–480PubMedGoogle Scholar
  11. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811–15825PubMedPubMedCentralGoogle Scholar
  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  13. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226PubMedGoogle Scholar
  14. Chen H, Zhang Y, He C, Wang Q (2014) Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp. C2. Plant Cell Physiol 55:634–644PubMedGoogle Scholar
  15. Chen H, Hu J, Qiao Y, Chen W, Rong J, Zhang Y, He C, Wang Q (2015) Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5:15117PubMedPubMedCentralGoogle Scholar
  16. Chen J, Wang Y, Benemann JR, Zhang X, Hu H, Qin S (2016) Microalgal industry in China: challenges and prospects. J Appl Phycol 28:715–725Google Scholar
  17. Chen H, Zheng Y, Zhan J, He C, Wang Q (2017) Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism. Biotechnol Biofuels 10:153PubMedPubMedCentralGoogle Scholar
  18. Cooksey KE, Guckert JB, Williams SA, Callis PR (1987) Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods 6:333–345Google Scholar
  19. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356Google Scholar
  20. Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642PubMedGoogle Scholar
  21. Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (2014) Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics 15:582PubMedPubMedCentralGoogle Scholar
  22. Ge F, Huang W, Chen Z, Zhang C, Xiong Q, Bowler C, Yang J, Xu J, Hu H (2014) Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. Plant Cell 26:1681–1697PubMedPubMedCentralGoogle Scholar
  23. Genicot G, Leroy JL, Soom AV, Donnay I (2005) The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63:1181–1194PubMedGoogle Scholar
  24. Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, De Brabanter J, De Cooman L (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492PubMedGoogle Scholar
  25. Goncalves EC, Johnson JV, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta 238:895–906PubMedGoogle Scholar
  26. Granum E, Kirkvold S, Myklestad SM (2002) Cellular and extracellular production of carbohydrates and amino acids by the marine diatom Skeletonema costatum: diel variations and effects of N depletion. Mar Ecol Prog Ser 242:83–94Google Scholar
  27. Greenspan P, Fowler SD (1985) Spectrofluorometric studies of the lipid probe, Nile red. J Lipid Res 26:781–789PubMedGoogle Scholar
  28. Griffiths MJ, van Hille RP, Harrison STL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001Google Scholar
  29. Griffiths MJ, van Hille RP, Harrison STL (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 29:2345–2356Google Scholar
  30. Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36Google Scholar
  31. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252PubMedGoogle Scholar
  32. Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312PubMedGoogle Scholar
  33. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedGoogle Scholar
  34. Huang Y, Zhang D, Xue S, Wang M, Cong W (2016) The potential of microalgae lipids for edible oil production. Appl Biochem Biotechnol 180:438–451PubMedGoogle Scholar
  35. Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res 51:635–640PubMedPubMedCentralGoogle Scholar
  36. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635Google Scholar
  37. Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics 9(Suppl 1):178–187PubMedGoogle Scholar
  38. Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci 97:8175–8179PubMedGoogle Scholar
  39. Jia J, Han D, Gerken HG, Li Y, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77Google Scholar
  40. Jian H, Jing Y, Peidong Z (2015) Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology. Sci World J 2015:920968Google Scholar
  41. Jones MR (2007) Lipids in photosynthetic reaction centres: structural roles and functional holes. Prog Lipid Res 46:56–87PubMedGoogle Scholar
  42. Juergens MT, Deshpande RR, Lucker BF, Park JJ, Wang H, Gargouri M, Holguin FO, Disbrow B, Schaub T, Skepper JN, Kramer DM, Gang DR, Hicks LM, Shachar-Hill Y (2015) The regulation of photosynthetic structure and function during nitrogen deprivation in Chlamydomonas reinhardtii. Plant Physiol 167:558–573PubMedGoogle Scholar
  43. Juntila DJ, Bautista MA, Monotilla W (2015) Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour Technol 191:395–398PubMedGoogle Scholar
  44. Lee SJ, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12:553–556Google Scholar
  45. Leng J, Sakurai I, Wada H, Shen JR (2008) Effects of phospholipase and lipase treatments on photosystem II core dimer from a thermophilic cyanobacterium. Photosynth Res 98:469–478PubMedGoogle Scholar
  46. Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, Kim J, Van Mooy BA, Bhattacharya D, Falkowski PG (2015) Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci 112:412–417PubMedGoogle Scholar
  47. Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268PubMedGoogle Scholar
  48. Li Y, Han F, Xu H, Mu J, Chen D, Feng B, Zeng H (2014) Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P). Bioresour Technol 174:24–32PubMedGoogle Scholar
  49. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2010) Acyl-lipid metabolism. The Arabidopsis Book 8:e0133Google Scholar
  50. Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:300–309PubMedGoogle Scholar
  51. Mansfeldt CB, Richter LV, Ahner BA, Cochlan WP, Richardson RE (2016) Use of de novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols. PLoS One 11(2):e0147527PubMedPubMedCentralGoogle Scholar
  52. Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears MJ, Dias DA, Kentish SE, Scales PJ, Botté CY, Callahan DL (2014) Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One 9(8):e103389PubMedPubMedCentralGoogle Scholar
  53. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425PubMedPubMedCentralGoogle Scholar
  54. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, you’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363PubMedGoogle Scholar
  55. Millan-Oropeza A, Fernandez-Linares L (2016) Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions. Environ Sci Pollut Res 24:25618–25626Google Scholar
  56. Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208PubMedGoogle Scholar
  57. Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59PubMedGoogle Scholar
  58. Mus F, Toussaint JP, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP (2013) Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:3625–3642PubMedGoogle Scholar
  59. Nam K, Lee H, Heo S-W, Chang YK, Han J-I (2017) Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. J Appl Phycol 29:1171–1178Google Scholar
  60. Ng FL, Phang SM, Periasamy V, Yunus K, Fisher AC (2014) Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One 9(5):e97643PubMedPubMedCentralGoogle Scholar
  61. Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914Google Scholar
  62. Ördög V, Stirk WA, Bálint P, Aremu AO, Okem A, Lovász C, Molnár Z, van Staden J (2016) Effect of temperature and nitrogen concentration on lipid productivity and fatty acid composition in three Chlorella strains. Algal Res 16:141–149Google Scholar
  63. Park JJ, Wang H, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR (2015) The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J 81:611–624PubMedGoogle Scholar
  64. Phang SM, Chu WL (1999) University of Malaya Algae Culture Collection (UMACC) catalogue of strains. Institute of Postgraduate Studies and Research, Kuala LumpurGoogle Scholar
  65. Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745PubMedGoogle Scholar
  66. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259Google Scholar
  67. Salomon E, Bar-Eyal L, Sharon S, Keren N (2013) Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochim Biophys Acta 1827:340–347PubMedGoogle Scholar
  68. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2013) Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol 134:353–361PubMedGoogle Scholar
  69. Saroussi SI, Wittkopp TM, Grossman AR (2016) The type II NADPH dehydrogenase facilitates cyclic electron flow, energy-dependent quenching, and chlororespiratory metabolism during acclimation of Chlamydomonas reinhardtii to nitrogen deprivation. Plant Physiol 170:1975–1988PubMedPubMedCentralGoogle Scholar
  70. Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, Chakrabarti T (2016) Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass Bioenergy 84:59–66Google Scholar
  71. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7PubMedPubMedCentralGoogle Scholar
  72. Simionato D, Block MA, La Rocca N, Jouhet J, Marechal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676PubMedPubMedCentralGoogle Scholar
  73. Solovchenko AE (2015) Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell. Photosynth Res 125:437–449PubMedGoogle Scholar
  74. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Bulletin 167. Fisheries Research Board of Canada, OttawaGoogle Scholar
  75. Su X, Xu J, Yan X, Zhao P, Chen J, Zhou C, Zhao F, Li S (2013) Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima. Metabolomics 9:300–310Google Scholar
  76. Tan KWM, Lin H, Shen H, Lee YK (2016) Nitrogen-induced metabolic changes and molecular determinants of carbon allocation in Dunaliella tertiolecta. Sci Rep 6:37235PubMedPubMedCentralGoogle Scholar
  77. Tsai CH, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein compromised hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci 111:15833–15838PubMedGoogle Scholar
  78. Valledor L, Furuhashi T, Recuenco-Muñoz L, Wienkoop S, Weckwerth W (2014) System-level network analysis of nitrogen starvation and recovery in Chlamydomonas reinhardtii reveals potential new targets for increased lipid accumulation. Biotechnol Biofuels 79:171Google Scholar
  79. Vello V, Phang SM, Chu WL, Abdul Majid N, Lim PE, Loh SK (2014) Lipid productivity and fatty acid composition-guided selection of Chlorella strains isolated from Malaysia for biodiesel production. J Appl Phycol 26:1399–1413Google Scholar
  80. Wang HT, Meng YY, Cao XP, Ai JN, Zhou JN, Xue S, Wang WL (2015) Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). Bioresour Technol 177:282–288PubMedGoogle Scholar
  81. Wase N, Black PN, Stanley BA, DiRusso CC (2014) Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13(3):1373–1396Google Scholar
  82. Wase N, Tu B, Black PN, DiRusso CC (2015) Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Res 11:74–84Google Scholar
  83. Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD, Liu JS, Lu SH, Guan Y, Li HY (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67PubMedPubMedCentralGoogle Scholar
  84. Yang Z-K, Ma Y-H, Zheng J-W, Yang W-D, Liu J-S, Li H-Y (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26:73–82PubMedGoogle Scholar
  85. Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8(7):e69225PubMedPubMedCentralGoogle Scholar
  86. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298PubMedGoogle Scholar
  87. Zhu J, Chen W, Chen H, Zhang X, He C, Rong J, Wang Q (2016) Improved productivity of neutral lipids in Chlorella sp. A2 by minimal nitrogen supply. Front Microbiol 7:557PubMedPubMedCentralGoogle Scholar
  88. Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Ocean and Earth Sciences (IOES)University of MalayaKuala LumpurMalaysia
  3. 3.School of Postgraduate StudiesInternational Medical University (IMU)Kuala LumpurMalaysia
  4. 4.Genetics and Molecular Biology Unit, Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations