Advertisement

Journal of Applied Phycology

, Volume 30, Issue 6, pp 3379–3386 | Cite as

Neoiriepentaol and nangenyne, halogenated diterpenoid and C15-acetogenin from red alga Laurencia nangii Masuda collected in Borneo

  • Takashi Kamada
  • Chin-Soon Phan
  • Charles Santhanaraju VairappanEmail author
8th Asian Pacific Phycological Forum

Abstract

The red algal genus Laurencia is a prolific producer of halogenated secondary metabolites. A new tricyclic dibrominated diterpenoid, neoiriepentaol (1) and chlorinated C15-acetogenin, nangenyne (2), along with two known terpenoids, neoirietetraol (3) and dactyloxene A (4), were isolated from methanol crude extract of red alga Laurencia nangii. The structures were established based on one- and two-dimensional nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and high-resolution electrospray ionization mass spectrometry (HRESIMS) data. These compounds were screened against seven species of marine fungi. Compounds 13 exhibited activity against Lagenidium thermophilum and Haliphthoros sabahensis. Potent activity was showed by 1 with L. thermophilum hyphal inhibition at MIC value of 12.5 μg mL−1 and hyphal motility was observed at 50 μg mL−1 within 24 h.

Keywords

Neoirieane-type Brominated diterpenoid C15-acetogenin Laurencia nangii Red alga 

Notes

Acknowledgements

The authors would like to thank Prof. Dr. Kishio Hatai (Universiti Malaysia Sabah) for providing fungal strains and assisting anti-fungal assay.

Funding

This work was financially supported by the Sabah Biodiversity Centre [GL0070] and Matsuken Kogyo Corporation [GL00155].

Supplementary material

10811_2018_1502_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1810 kb)

References

  1. Al-Lihaibi SS, Abdel-Lateff A, Alarif WM, Nogata Y, Ayyad SN, Okino T (2015) Potent antifouling metabolites from Red Sea organisms. Asian J Chem 27:2252–2256CrossRefGoogle Scholar
  2. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 20:1–49CrossRefGoogle Scholar
  3. El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18:1–25CrossRefGoogle Scholar
  4. Fenical W (1975) Halogenation in the Rhodophyta a review. J Phycol 11:245–259Google Scholar
  5. Fuangsawat W, Abking N, Lawhavinit O (2011) Sensitivity comparison of pathogenic aquatic fungal hyphae to sodium chloride, hydrogen peroxide, acetic acid and povidone iodine. Kasetsart J (Nat Sci) 45:84–89Google Scholar
  6. Fujiwara K, Awakura D, Tsunashima M, Nakamura A, Honma T, Murai A (1999) Total synthesis of (+)-obtusenyne. J Org Chem 64:2616–2617CrossRefGoogle Scholar
  7. Furusaki A, Katsuragi S, Suehiro K, Matsumoto T (1985) The conformations of (Z)-2,3,4,7,8,9-hexahydrooxonin and (Z)-cyclononene. X-ray structure determinations of isolaurallene and neolaurallene, and force-field calculations. Bull Chem Soc Jpn 58:803–809Google Scholar
  8. Gopichand Y, Schmitz FJ, Shelly J, Rahman A, Van der Helm D (1981) Marine natural products: halogenated acetylenic ethers from the sea hare Aplysia dactylomela. J Org Chem 46:5192–5197CrossRefGoogle Scholar
  9. Hatai K (2012) Diseases of fish and shellfish caused by marine fungi. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. Springer, Heidelberg, pp 15–52Google Scholar
  10. Hill RA (2003) Marine natural products. Annu Rep Prog Chem Sect B 99:183–207CrossRefGoogle Scholar
  11. Howard BM, Fenical W, Donovan SE, Clardy J (1982) Neoirieone, a diterpenoid of a new skeletal class from the red marine alga Laurencia cf. irieii. Tetrahedron Lett 23:3847–3850CrossRefGoogle Scholar
  12. Jeong W, Kim MJ, Kim H, Kim S, Kim D, Shin KJ (2010) Substrate-controlled asymmetric total synthesis and structure revision of (+)-itomanallene A. Angew Chem Int Ed Engl 49:752–756CrossRefGoogle Scholar
  13. Ji NY, Li XM, Li K, Wang BG (2007) Laurendecumallenes A-B and laurendecumenynes A-B, halogenated nonterpenoid C15-acetogenins from the marine red alga Laurencia decumbens. J Nat Prod 70:1499–1502CrossRefGoogle Scholar
  14. Kamada T, Vairappan CS (2012) A new bromollene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119–2125CrossRefGoogle Scholar
  15. Kamada T, Vairappan CS (2015) New laurene-type sesquiterpene from Bornean Laurencia nangii. Nat Prod Commun 10:843–844PubMedGoogle Scholar
  16. Kamada T, Vairappan CS (2017) Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Nat Prod Res 31:333–340CrossRefGoogle Scholar
  17. Kitancharoen N, Yamamoto A, Hatai K (1997a) Fungicidal effect of hydrogen peroxide on fungal infection of rainbow trout eggs. Mycoscience 38:375–378CrossRefGoogle Scholar
  18. Kitancharoen N, Ono A, Yamamoto A, Hatai K (1997b) The fungistatic effect of NaCl on rainbow trout egg saprolegniasis. Fish Pathol 32:159–162CrossRefGoogle Scholar
  19. Kokkotou K, Ioannou E, Nomikou M, Pitterl F, Vonaparti A, Siapi E, Zervou M, Roussis V (2014) An integrated approach using UHPLC-PDA-HRMS and 2D HSQC NMR for the metabolic profiling of the red alga Laurencia: dereplication and tracing of natural products. Phytochemistry 108:208–219CrossRefGoogle Scholar
  20. Lee YN, Hatai K, Kurata O (2016) First report of Lagenidium thermophilum isolated from eggs and larvae of mud crab (Scylla tranquebarica) in Sabah, Malaysia. Bull Eur Assoc Fish Pathol 36:111–117Google Scholar
  21. Lee YN, Hatai K, Kurata O (2017) Haliphthoros sabahensis sp. nov. isolated from mud crab Scylla tranquebarica eggs and larvae in Malaysia. Fish Pathol 52:31–37CrossRefGoogle Scholar
  22. Masuda M, Abe T, Suzuki T, Suzuki M (1996) Morphological and chemotaxonomic studies on Laurencia composita and L. okamurae (Ceramiales, Rhodophyta). Phycologia 35:550–562CrossRefGoogle Scholar
  23. Matsuo Y, Suzuki M, Masuda M (1995) Enshuol, a novel squalene-derived pentacyclic triterpene alcohol from a new species of the red algal genus Laurencia. Chem Lett 24:1043–1044CrossRefGoogle Scholar
  24. Munchan C, Hatai K, Takagi S, Yamashita A (2009) In vitro and in vivo effectiveness of itraconazole against Ochroconis humicola isolated from fish. Aquac Sci 57:399–404Google Scholar
  25. Panchai K, Hanjavanit C, Sangpradub N, Hatai K (2016) Anti-oomycetic effect of copper sulfate in vitro on Achlya spp. isolated from infected nile tilapia (Oreochromis niloticus). AACL Bioflux 9:414–421Google Scholar
  26. Schmitz FJ, McDonald FJ, Vanderahl DJ (1978) Marine natural products: sesquiterpene alcohols and ethers from the sea hare Aplysia dactylomela. J Org Chem 43:4220–4225CrossRefGoogle Scholar
  27. Schreier TM, Rach JJ, Howe GE (1996) Efficacy of formalin, hydrogen peroxide, and sodium chloride on fungal-infected rainbow trout eggs. Aquaculture 140:323–331CrossRefGoogle Scholar
  28. Suzuki M, Vairappan CS (2005) Halogenated secondary metabolites from Japanese species of the red algal genus Laurencia (Rhodomelaceae. Ceramiales). Curr Top Phytochem 7:1–34Google Scholar
  29. Suzuki M, Kurosawa E, Furusaki A, Katsuragi S, Matsumoto T (1984) Neolaurallene, a new halogenated C-15 nonterpenoid from the red alga Laurencia okamurai Yamada. Chem Lett 13:1033–1034Google Scholar
  30. Takahashi Y, Daitoh M, Suzuki M, Abe T, Masuda M (2002) Halogenated metabolites from new Okinawan red alga Laurencia yonaguniensis. J Nat Prod 65:395–398CrossRefGoogle Scholar
  31. Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2007) Crystal structure and absolute stereochemistry of neoirietetraol. Anal Sci 23:x103–x104CrossRefGoogle Scholar
  32. Takahashi H, Takahashi Y, Suzuki M, Abe T, Masuda M (2010) Neoirietriol. Acta Cryst E66:o1795Google Scholar
  33. Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805–1813CrossRefGoogle Scholar
  34. Vairappan CS, Suzuki M, Abe T, Masuda M (2001) Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species. Phytochemistry 58:517–523CrossRefGoogle Scholar
  35. Vairappan CS, Anangdan SP, Tan KL, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305–311CrossRefGoogle Scholar
  36. Vairappan CS, Zanil II, Kamada T (2014) Structural diversity and geographical distribution of halogenated secondary metabolites in red algae, Laurencia nangii Masuda (Rhodomelaceae, Ceramiales), in the coastal waters of North Borneo Island. J Appl Phycol 26:1189–1198CrossRefGoogle Scholar
  37. Wanke T, Philippus AC, Zatelli GA, Vieira LFO, Lhullier C, Falkenberg M (2015) C15 acetogenins from the Laurencia complex: 50 years of research—an overview. Rev Bras Farmacogn 25:569–587Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Natural Products Chemistry, Department of Materials and Life Science, Faculty of Science and TechnologyShizuoka Institute of Science and TechnologyFukuroiJapan
  2. 2.Laboratory of Natural Products Chemistry, Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations