Advertisement

Journal of Applied Phycology

, Volume 31, Issue 1, pp 575–585 | Cite as

Evaluation of kelp harvest strategies: recovery of Lessonia berteroana (Phaeophyceae, Laminariales) in Pan de Azucar, Atacama, Chile

  • Renato WestermeierEmail author
  • Pedro Murúa
  • David J. Patiño
  • Gabriela Manoli
  • Dieter G. Müller
Article

Abstract

The brown alga, Lessonia berteroana, is the most exploited seaweed in South America, with majority of landings in northern Chile. We conducted population studies in a L. berteroana bed at the Pan de Azucar National Park in order to evaluate recovery potential under different harvest schemes. In an intact sub-population, L. berteroana size tendency varies with season, between median values of 150 cm in early spring and 40 cm in summer. Size is inversely correlated with density, which increases in summer due to a major recruitment phase (up to 40 ind m−2) and decreases in winter, with adult individuals (5 ind m−2) dominating. Size and recruitment showed a rapid increase in totally harvested areas and on artificial substrata. However, after summer harvesting, first recruits appeared after only one month in natural beds, while they needed up to five months on concrete blocks. Overall growth in wild populations was lowest, suggesting a strong dependence on density. Major thallus growth occurred in recruits from total harvest in autumn and from concrete blocks. We discuss these different recovery patterns and compare them with other commercial kelps in Chile, where similar approaches have been performed, expecting that they will help to improve Lessonia management in northern Chile.

Keywords

Phaeophyceae Population dynamics Management techniques Kelp harvesting Huiro negro 

Notes

Acknowledgements

Laboratory and field support by L.A. Muñoz, C. Atero, and J. Martinez (UACh) and unrestricted access to the Pan de Azucar Lodge provided by the CONAF personnel are acknowledged. Thanks are also due to Felix Leiva (Radboud University Nijmegen) for his support to set-up our linear mixed models, and to the two anonymous reviewers who helped to improve the earlier version of this manuscript. This work was done in the framework of the project FIC 2013 33-91-243 (GORE Atacama), granted to the Universidad Austral de Chile (GM and RW). PM is currently funded by CONICYT (Becas Chile 72130422) for PhD studies at the University of Aberdeen.

References

  1. Aguilera MA (2011) The functional roles of herbivores in the rocky intertidal systems in Chile: a review of food preferences and consumptive effects. Rev Chil Hist Nat 84:241–261CrossRefGoogle Scholar
  2. Aguilera MA, Valdivia N, Broitman BR (2015) Herbivore–alga interaction strength influences spatial heterogeneity in a kelp-dominated intertidal community. PLoS One 10:e0137287CrossRefGoogle Scholar
  3. Akaike H (1973) Information theory and an extension of maximum likelihood principle. In: Petran BN, Csaaki F (eds) International symposium on information theory. Akadeemiai Kiadi, Budapest, pp 267–281Google Scholar
  4. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. doi:  https://doi.org/10.18637/jss.v067.i01
  5. Borras-Chavez R, Edwards MS, Arvizu-Higuera DL, Rodríguez-Montesinos YE, Hernández-Carmona G, Briceño-Domínguez D (2016) Repetitive harvesting of Macrocystis pyrifera (Phaeophyceae) and its effects on chemical constituents of economic value. Bot Mar 51:63–71Google Scholar
  6. Cancino JM, Santelices B (1984) Importancia ecologica de los discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:23–33Google Scholar
  7. Carney L, Waaland J, Klinger T, Ewing K (2005) Restoration of the bull kelp Nereocystis luetkeana in nearshore rocky habitats. Mar Ecol Prog Ser 302:49–61CrossRefGoogle Scholar
  8. Castilla JC (1983) Environmental impact in sandy beaches of copper mine tailings at Chañaral, Chile. Mar Pollut Bull 14:459–464CrossRefGoogle Scholar
  9. Correa JA, Lagos NA, Medina MH, Castilla JC, Cerda M, Ramirez M, Martinez E, Faugeron S, Andrade S, Pinto R, Contreras L (2006) Experimental transplants of the large kelp Lessonia nigrescens (Phaeophyceae) in high-energy wave exposed rocky intertidal habitats of northern Chile: experimental, restoration and management applications. J Exp Mar Bio Ecol 335:13–18CrossRefGoogle Scholar
  10. Evans GC (1992) The quantitative analysis of plant growth. In: Evans G (ed) Studies in ecology. Blackwell Scientific Publishers, Oxford, pp 247–254Google Scholar
  11. Faugeron S, Martínez EA, Correa JA, Billot C (2005) Long-term copper mine waste disposal in northern Chile associated with gene flow disruption of the intertidal kelp Lessonia nigrescens. Mar Ecol Prog Ser 288:129–140CrossRefGoogle Scholar
  12. Hoffmann AJ, Santelices B (1982) Effects of light intensity and nutrients on gametophytes and gametogenesis of Lessonia nigrescens Bory (Phaeophyta). J Exp Mar Bio Ecol 60:77–89 d CrossRefGoogle Scholar
  13. Levitt GJ, Anderson RJ, Boothroyd CJT, Kemp FA (2002) The effects of kelp harvesting on its regrowth and the understorey benthic community at Danger Point, South Africa, and a new method of harvesting kelp fronds. South African J Mar Sci 24:71–85CrossRefGoogle Scholar
  14. Martínez EA, Cárdenas L, Pinto R (2003) Recovery and genetic diversity of the intertidal kelp Lessonia nigrescens (Phaeophyceae) 20 years after El Niño 1982/83. J Phycol 39:504–508CrossRefGoogle Scholar
  15. Murúa P, Westermeier R, Muñoz LA, Patiño DJ, Müller DG, Küpper FC, Peters AF (2017) Laminariocolax aecidioides as the causative agent of malformations in Lessonia berteroana from Atacama: DNA barcoding, ultrastructure and field prevalence. Phycologia 56:133Google Scholar
  16. Ojeda FP, Santelices B (1984) Ecological dominance of Lessonia nigrescens (Phaeophyta) in Central Chile. Mar Ecol Prog Ser 19:83–91CrossRefGoogle Scholar
  17. Oppliger LV, Correa JA, Faugeron S, Beltran J, Tellier F, Valero M, Destombe C (2011) Sex ratio variation in the Lessonia nigrescens complex (Laminariales, Phaeophyceae): effect of latitude, temperature, and marginality. J Phycol 47:5–12CrossRefGoogle Scholar
  18. Oróstica MH, Aguilera MA, Donoso GA, Vásquez JA, Broitman BR (2014) Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Mar Ecol Prog Ser 511:71–82CrossRefGoogle Scholar
  19. Parada GM, Tellier F, Martínez EA (2016) Spore dispersal in the intertidal kelp Lessonia spicata: macrochallenges for the harvested Lessonia species complex at microscales of space and time. Bot Mar 59:283–289Google Scholar
  20. Pinheiro JC, Bates D (2000) Mixed effects models in S and S-PLUS. Springer, New YorkCrossRefGoogle Scholar
  21. Porse H, Rudolph B (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200CrossRefGoogle Scholar
  22. ProChile (2015) Estadisticas de comercio exterior. In: Serv. Nac. AduanGoogle Scholar
  23. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  24. Santelices B, Ojeda F (1984) Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar Ecol Prog Ser 19:73–82CrossRefGoogle Scholar
  25. Santelices B, Castilla JC, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar Biol 59:119–132CrossRefGoogle Scholar
  26. Sernapesca (2015) Desembarque artesanal por region. In: Anu. Estad. Pesca 2014Google Scholar
  27. Tala F, Véliz K, Gómez I, Edding M (2007) Early life stages of the South Pacific kelps Lessonia nigrescens and Lessonia trabeculata (Laminariales, Phaeophyceae) show recovery capacity following exposure to UV radiation. Phycologia 46:467–470CrossRefGoogle Scholar
  28. Tellier F, Tapia J, Faugeron S, Destombe C, Valero M (2011) The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol 47:894–903CrossRefGoogle Scholar
  29. Terawaki T, Hasegawa H, Arai S, Ohno M (2001) Management-free techniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J Appl Phycol 13:13–17CrossRefGoogle Scholar
  30. Thomas D, Beltrán J, Flores V, Contreras L, Bollmann E, Corea JA (2009) Laminariocolax sp. (Phaeophyceae) associated with gall developments in Lessonia nigrescens (Phaeophyceae). J Phycol 45:1252–1258Google Scholar
  31. Vásquez JA (2008) Production, use and fate of Chilean brown seaweeds: resources for a sustainable fishery. J Appl Phycol 20:457–467CrossRefGoogle Scholar
  32. Vásquez JA, Santelices B (1990) Ecological effects of harvesting Lessonia (Laminariales, Phaeophyta) in central Chile. In: Thirteenth International Seaweed Symposium. Springer, Dordrecht, pp 41–47Google Scholar
  33. Vásquez JA, Tala F (1995) Repopulation of intertidal areas with Lessonia nigrescens in northern Chile. J Appl Phycol 7:347–349CrossRefGoogle Scholar
  34. Vásquez JA, Piaget N, Vega JMA (2012) The Lessonia nigrescens fishery in northern Chile: “how you harvest is more important than how much you harvest.”. J Appl Phycol 24:417–426CrossRefGoogle Scholar
  35. Vásquez X, Gutiérrez A, Buschmann AH, Flores R, Farias D, Leal P (2014) Evaluation of repopulation techniques for the giant kelp Macrocystis pyrifera (Laminariales). Bot Mar 57:123–130CrossRefGoogle Scholar
  36. Vega JMA, Broitman BR, Vásquez JA (2014) Monitoring the sustainability of Lessonia nigrescens (Laminariales, Phaeophyceae) in northern Chile under strong harvest pressure. J Appl Phycol 26:791–801CrossRefGoogle Scholar
  37. Vega JMA, Asorey CM, Piaget N (2016) Asociación Scurria-Lessonia, indicador de integridad ecológica en praderas explotadas de huiro negro Lessonia berteroana (ex L. nigrescens) en el norte de Chile. Rev Biol Mar Oceanogr 51:337–345CrossRefGoogle Scholar
  38. Venables W, Ripley B (2002) Modern applied statistics with S. Springer, New YorkCrossRefGoogle Scholar
  39. Westermeier R, Gómez I (1996) Biomass, energy contents and major organic compounds in the brown alga Lessonia nigrescens (Laminariales, Phaeophyceae) from Mehuín, South Chile. Bot Mar 39:553–560CrossRefGoogle Scholar
  40. Westermeier R, Müller DG, Gómez I, Rivera P, Wenzel H (1994) Population biology of Durvillaea antarctica and Lessonia nigrescens (Phaeophyta) on the rocky shores of Southern Chile. Mar Ecol Ser 110:187–194CrossRefGoogle Scholar
  41. Westermeier R, Patiño DJ, Murúa P, Muñoz L, Ruiz A, Atero C, Añazco M (2013) Uso de algas pardas de cultivo para la biorremediacion del ambiente costero de la Bahia de Chañaral. Informe final proyecto FIC Atacama 2011 33-01-211. CopiapoGoogle Scholar
  42. Westermeier R, Murúa P, Patiño DJ, Muñoz L, Atero C, Müller DG (2014a) Repopulation techniques for Macrocystis integrifolia (Phaeophyceae: Laminariales) in Atacama, Chile. J Appl Phycol 26:511–518CrossRefGoogle Scholar
  43. Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2014b) Giant kelp (Macrocystis) fishery in Atacama (Northern Chile): biological basis for management of the integrifolia morph. J Appl Phycol 26:1071–1079CrossRefGoogle Scholar
  44. Westermeier R, Murúa P, Patiño DJ, Muñoz L, Müller DG (2017a) Holdfast fragmentation of Macrocystis pyrifera (integrifolia morph) and Lessonia berteroana in Atacama (Chile): a novel approach for kelp bed restoration. J Appl Phycol 28:2969–2977CrossRefGoogle Scholar
  45. Westermeier R, Murúa P, Patiño DJ, Müller DG (2017b) Population biology and long-term mariculture studies in the brown alga Lessonia trabeculata in Atacama, Chile. J Appl Phycol 29:2267–2275CrossRefGoogle Scholar
  46. Wickham H (2009) ggplot2. Springer New York, New York, NYCrossRefGoogle Scholar
  47. Zimmermann H, Zimmermann D, Reuss R, Feilen PJ, Manz B, Katsen A, Weber M, Ihmig FR, Ehrhart F, Geßner P, Behringer M, Steinbach A, Wegner LH, Sukhorukov VL, Vásquez JA, Schneider S, Weber MM, Volke F, Wolf R, Zimmermann U (2005) Towards a medically approved technology for alginate-based microcapsules allowing long-term immunoisolated transplantation. J Mater Sci Mater Med 16:491–501CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Macroalgas, Instituto de AcuiculturaUniversidad Austral de ChilePuerto MonttChile
  2. 2.Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and DevelopmentUniversity of AberdeenAberdeenUK
  3. 3.The Scottish Association for Marine Science, Scottish Marine Institute, Culture Collection for Algae and ProtozoaObanUK
  4. 4.Escuela de Ingenieria Civil IndustrialUniversidad Austral de ChilePuerto MonttChile
  5. 5.Fachbereich Biologie der Universität KonstanzKonstanzGermany

Personalised recommendations