Advertisement

Journal of Applied Phycology

, Volume 30, Issue 6, pp 3471–3481 | Cite as

Screening cyanobacteria from marine coastal waters of Thailand for biohydrogen production

  • Nichanan Tinpranee
  • Aran IncharoensakdiEmail author
  • Saranya PhunpruchEmail author
Article

Abstract

Cyanobacteria are prokaryotic organisms capable of oxygenic photosynthesis. H2 can be produced by cyanobacterial bidirectional hydrogenase, but mainly during anaerobic dark fermentation. Here, we screened H2 producing cyanobacteria isolated from marine environments in Thailand and optimized physiological conditions for maximizing H2 production of the selected isolate. Most of the 54 cyanobacterial strains isolated and purified from samples of seawater, stones, sand, and shells in the Gulf of Thailand and the Andaman Sea, southern part of Thailand produced H2 when cells were incubated in nitrogen-deprived medium under dark/anaerobic condition. The filamentous non-heterocystous cyanobacterium Geitlerinema sp. RMK-SH10 gave the highest H2 yield with highest H2 production rate found in 7-day grown cells. Geitlerinema sp. RMK-SH10 showed maximum H2 production rate of 0.271 ± 0.013 μmol H2 mg−1 dry weight h−1 when incubated in NaNO3-free ASN III medium containing 0.2 M NaCl, 18.9 mmol C-atom of glucose L−1, and 0.1 μM Ni2+. These results suggest that the marine filamentous cyanobacterium Geitlerinema sp. RMK-SH10 has high potential as a H2 producer amenable for further improvement by genetic manipulation.

Keywords

H2 production Marine cyanobacteria Geitlerinema 

Notes

Funding information

This study was financially supported by a research grant from the Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang. A.I. thanks the Chulalongkorn University for the research grant on the Frontier Research Energy Cluster (CU-59-048-EN).

Supplementary material

10811_2018_1490_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19kb)

References

  1. Allahverdiyeva Y, Leino H, Saari L, Fewer DP, Shunmugam S, Sivonen K, Aro EM (2010) Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 35:1117–1127CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira maxima”. Appl Environ Microbiol 74:6102–6113PubMedPubMedCentralCrossRefGoogle Scholar
  4. Antal TK, Lindblad P (2005) Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J Appl Microbiol 98:114–120PubMedCrossRefGoogle Scholar
  5. Axelsson R, Lindblad P (2002) Transcriptional regulation of Nostoc hydrogenases: effects of oxygen, hydrogen, and nickel. Appl Environ Microbiol 68:444–447PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baebprasert W, Lindblad P, Incharoensakdi A (2010) Response of H2 production and Hox-hydrogenase activity to external factors in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Int J Hydrog Energy 35:6611–6616CrossRefGoogle Scholar
  7. Carrieri D, Ananyev G, Garcia Costas AM, Bryant DA, Dismukes GC (2008) Renewable hydrogen production by cyanobacteria: nickel requirements for optimal hydrogenase activity. Int J Hydrog Energy 33:2014–2022CrossRefGoogle Scholar
  8. Castenholz RW, Rippka R, Herdman M (2001) Phylum BX. Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 473–599CrossRefGoogle Scholar
  9. Chen PC, Fan SH, Chiang CL, Lee CM (2008) Effect of growth conditions on the hydrogen production with cyanobacterium Anabaena sp. strain CH3. Int J Hydrog Energy 33:1460–1464CrossRefGoogle Scholar
  10. Daday A, Mackerras AH, Smith GD (1985) The effect of nickel on hydrogen metabolism and nitrogen fixation in the cyanobacterium Anabaena cylindrica. J Gen Microbiol 131:231–238Google Scholar
  11. Datta M, Nikki G, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:8–9Google Scholar
  12. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4:36–46CrossRefGoogle Scholar
  13. Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373PubMedPubMedCentralGoogle Scholar
  14. Gram HC (1884) Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med 2:185–189Google Scholar
  15. Grim SL, Dick GJ (2016) Photosynthetic versatility in the genome of Geitlerinema sp. PCC 9228 (formerly Oscillatoria limnetica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Front Microbiol 7:1546PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gutekunst K, Hoffmann D, Lommer M, Egert M, Suzuki I, Schulz-Friedrich R, Appel J (2006) Metal dependence and intracellular regulation of the bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803. Int J Hydrog Energy 31:1452–1459CrossRefGoogle Scholar
  17. He M, Li L, Liu J (2012) Isolation of wild microalgae from natural water bodies for high hydrogen producing strains. Int J Hydrog Energy 37:4046–4056CrossRefGoogle Scholar
  18. Hoshaw RW, Rosowki JR (1973) Methods for microscopic algae. In: Stein (ed) Handbook of phycological methods, culture methods and growth measurements. Cambridge University Press, New York, pp 54–66Google Scholar
  19. Houchins JP (1984) The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768:227–255CrossRefGoogle Scholar
  20. Kothari A, Potrafka R, Garcia-Pichel F (2012) Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 162:105–114PubMedCrossRefGoogle Scholar
  21. Kumar D, Kumar HD (1992) Hydrogen production by several cyanobacteria. Int J Hydrog Energy 17:847–852CrossRefGoogle Scholar
  22. Kumazawa S, Mitsui A (1981) Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. Int J Hydrog Energy 6:339–348CrossRefGoogle Scholar
  23. Küpper H, Šetlík I, Seibert S et al (2008) Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179:784–798PubMedCrossRefGoogle Scholar
  24. Kuwada Y, Ohta Y (1989) Hydrogen production and carbohydrate consumption by Lyngbya sp. (No. 108). Agric Biol Chem 53:2847–2851Google Scholar
  25. Lambert GR, Smith GD (1977) Hydrogen formation by marine blue-green algae. FEBS Lett 83:159–162PubMedCrossRefGoogle Scholar
  26. Leino H, Shunmugam S, Isojärvi J, Oliveira P, Mulo P, Saari L, Battchikova N, Sivonen K, Lindblad P, Aro EM, Allahverdiyeva Y (2014) Characterization of ten H2 producing cyanobacteria isolated from the Baltic Sea and Finnish lakes. Int J Hydrog Energy 39:8983–8991CrossRefGoogle Scholar
  27. Lin JT, Stewart V (1997) Nitrate assimilation by bacteria. Adv Microb Physiol 39:1–30CrossRefGoogle Scholar
  28. Luo YH, Mitsui A (1994) Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511. J Biotechnol Bioeng 44:1255–1260CrossRefGoogle Scholar
  29. Monshupanee T, Incharoensakdi A (2014) Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 116:830–838PubMedCrossRefGoogle Scholar
  30. Phlips EJ, Mitsui A (1983) Role of light intensity and temperature in the regulation of hydrogen photoproduction by the marine cyanobacterium Oscillatoria sp. strain Miami BG7. Appl Environ Microbiol 45:1212–1220PubMedPubMedCentralGoogle Scholar
  31. Phunpruch S, Baebprasert W, Thongpeng C, Incharoensakdi A (2006) Nucleotide sequencing and transcriptional analysis of uptake hydrogenase genes in the filamentous N2-fixing cyanobacterium Anabaena siamensis. J Appl Phycol 18:713–722CrossRefGoogle Scholar
  32. Phunpruch S, Taikhao S, Incharoensakdi A (2016) Identification of bidirectional hydrogenase genes and their co-transcription in unicellular halotolerant cyanobcterium Aphanothece halophytica. J Appl Phycol 28:967–978CrossRefGoogle Scholar
  33. Prabaharan D, Subramanian G (1996) Oxygen-free hydrogen production by the marine cyanobacterium Phormidium valderianum BDU 20041. Bioresour Technol 57:111–116CrossRefGoogle Scholar
  34. Prabaharan D, Arun-Kumar D, Uma L, Subramanian G (2010) Dark hydrogen production in nitrogen atmosphere—an approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041. Int J Hydrog Energy 35:10725–10730CrossRefGoogle Scholar
  35. Prince RC, Kheshgi HS (2005) The photobiological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31:19–31PubMedCrossRefGoogle Scholar
  36. Rai AK, Abraham G (1995) Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacterium Anabaena doliolum. J Appl Bacteriol 78:501–506CrossRefGoogle Scholar
  37. Raksajit W, Satchasataporn K, Lehto K, Mäenpää P, Incharoensakdi A (2012) Enhancement of hydrogen production by the filamentous non-heterocystous Arthrospira sp. PCC 8005. Int J Hydrog Energy 37:18791–18797CrossRefGoogle Scholar
  38. Ramana CHV, Sasikala K, Rao PR, Subramanyam M (1990) Hydrogen production by cyanobacteria. I. Screening of unicellular and filamentous forms. Proc Indian Natl Sci Acad B56:361–366Google Scholar
  39. Raven JA, Evans MCW, Korbs RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  40. Reddy PM, Spiller H, Albrecht SL, Shanmugam KT (1996) Photo-dissimilation of fructose to H2 and CO2 by a dinitrogen-fixing cyanobacterium, Anabaena variabilis. Appl Environ Microbiol 62:1220–1226PubMedPubMedCentralGoogle Scholar
  41. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979:1–61Google Scholar
  42. Saha SK, Uma L, Subramanian G (2003) Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol Ecol 45:263–272CrossRefGoogle Scholar
  43. Schütz K, Happe T, Troshina O, Lindblad P, Leitão E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218:350–359PubMedCrossRefGoogle Scholar
  44. Serebryakova LT, Sheremetieva M, Tsygankov AA (1998) Reversible hydrogenase activity of Gloeocapsa alpicola in continuous culture. FEMS Microbiol Lett 166:89–94CrossRefGoogle Scholar
  45. Shah V, Garg N, Madamwar D (2003) Ultrastructure of the cyanobacterium Nostoc muscorum and exploitation of the culture for hydrogen production. Folia Microbiol 48:65–70CrossRefGoogle Scholar
  46. Stal LJ, Krumbein WE (1981) Aerobic nitrogen fixation in pure cultures of a benthic marine Oscillatoria (cyanobacteria). FEMS Microbiol Lett 11:295–298CrossRefGoogle Scholar
  47. Taikhao S, Junyapoon S, Incharoensakdi A, Phunpruch S (2013) Factors affecting biohydrogen production by unicellular halotolerant cyanobacterium Aphanothece halophytica. J Appl Phycol 25:575–585CrossRefGoogle Scholar
  48. Taikhao S, Incharoensakdi A, Phunpruch S (2015) Dark fermentative hydrogen production by the unicellular halotolerant cyanobacterium Aphanothece halophytica grown in seawater. J Appl Phycol 27:187–196CrossRefGoogle Scholar
  49. Tamagnini P, Costa J-L, Almeida L, Oliveira M-J, Salema R, Lindblad P (2000) Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40:356–361PubMedCrossRefGoogle Scholar
  50. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720PubMedCrossRefGoogle Scholar
  51. Tel-Or E, Melhamed-Harel H (1981) Adaptation to salt of photosynthetic apparatus in cyanobacteria. In: Akoyunoglou G (ed) Photosynthesis. Bablan International, Philadelphia, pp 455–462Google Scholar
  52. Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57Google Scholar
  53. Tiwari A, Pandey A (2012) Cyanobacterial hydrogen production—a step towards clean environment. Int J Hydrog Energy 37:139–150CrossRefGoogle Scholar
  54. Troshina O, Serebryakova LT, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU743 during fermentation. Int J Hydrog Energy 27:1283–1289CrossRefGoogle Scholar
  55. Vyas D, Kumar HD (1995) Nitrogen fixation and hydrogen uptake in four cyanobacteria. Int J Hydrog Energy 20:163–168CrossRefGoogle Scholar
  56. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–130PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  2. 2.Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Bioenergy Research Unit, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations