Journal of Applied Phycology

, Volume 30, Issue 6, pp 3445–3454 | Cite as

A genetic diversity assessment of Halymenia malaysiana (Halymeniaceae, Rhodophyta) from Malaysia and the Philippines based on COI-5P and rbcL sequences

  • Pui-Ling TanEmail author
  • Phaik-Eem LimEmail author
  • Showe-Mei Lin
  • Siew-Moi Phang
  • Stefano G.A. Draisma
  • Lawrence M. Liao
8th Asian Pacific Phycological Forum


Little is known about the genetic diversity and phylogeographic structure of seaweeds in Southeast Asia particularly for Halymenia species. Herein, molecular analyses based on DNA sequences of the COI-5P and rbcL were performed to assess the genetic structure within the foliose Halymenia species H. malaysiana in Malaysia and the Philippines. A total of ten COI-5P haplotypes and eight rbcL haplotypes were recognized from 42 specimens of H. malaysiana examined in this study. The genetic diversities of H. malaysiana were relatively higher based on the COI-5P sequences compared with the rbcL sequences. The results showed that populations from Peninsular Malaysia (East, South, and West coast) were genetically homogenous and exhibited low level of genetic divergence from populations from East Malaysia. In contrast, populations from the Philippines were distinct from Malaysian populations. Site-specific distribution was also evident in the Philippine populations of H. malaysiana.


COI-5P Halymenia malaysiana Rhodophyta Genetic variation Phylogeography rbcRed algae 



We would like to thank the University of Malaya and the Institute of Ocean and Earth Sciences for providing various research facilities.

Funding information

This study was funded in part by the E-science Fund (04-01-03-SF0672) and the Postgraduate Research Fund (PG081-2013A). We would also like to thank the National University of Malaysia and Dr. Adam Lim from Save Our Seahorses Malaysia for organizing the East-Johor and Pulau Merambong expeditions, respectively. Support was provided by the Borneo Marine Research Institute (Universiti Malaysia Sabah), the National Oceanography Directorate (NODMOSTI), the World Wildlife Fund—Malaysia, the Economic Planning Unit Sabah, Sabah Parks, and the Department of Fisheries Sabah.

Supplementary material

10811_2018_1484_MOESM1_ESM.pdf (171 kb)
ESM 1 (PDF 171 kb)
10811_2018_1484_MOESM2_ESM.pdf (107 kb)
ESM 2 (PDF 106 kb)
10811_2018_1484_MOESM3_ESM.pdf (93 kb)
ESM 3 (PDF 92 kb)


  1. Azevedo CAA, Cassano V, Oliveira MC (2016a) Diversity of branched Halymenia (Halymeniales, Rhodophyta) species on the Brazilian coast: molecular and morphological analyses reveal three new species. Phycologia 55:431–444CrossRefGoogle Scholar
  2. Azevedo CAA, Cassano V, Oliveira MC (2016b) Phylogenetic relationships among Halymenia (Halymeniaceae, Rhodophyta) species on the Brazilian coast with description of Halymenia cearensis sp. nov. Phytotaxa 280:241–258CrossRefGoogle Scholar
  3. Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390PubMedCrossRefGoogle Scholar
  4. Briggs JC (2005) The marine East Indies: diversity and speciation. J Biogeogr 32:1517–1522CrossRefGoogle Scholar
  5. Buchanan J, Zuccarello GC (2012) Decoupling of short- and long- distance dispersal pathways in the endemic New Zealand seaweed Carpophyllum maschalocarpum (Phaeophyceae, Fucales). J Phycol 48:518–529PubMedCrossRefGoogle Scholar
  6. Chan SW, Cheang CC, Chirapart A, Gerung G, Tharith C, Ang P (2013) Homogeneous population of the brown alga Sargassum polycystum in Southeast Asia: possible role of recent expansion and asexual propagation. PLoS One 8:e77662PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cheang CC, Chu KH, Fujita D, Yoshida G, Hiraoka M, Critchley A, Choi HG, Duan D, Serisawa Y, Ang PO (2010) Low genetic variability of Sargassum muticum (Phaeophyceae) revealed by a global analysis of native and introduced populations. J Phycol 46:1063–1073CrossRefGoogle Scholar
  8. Clarkston BE, Saunders GW (2010) A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany 88:119–131CrossRefGoogle Scholar
  9. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  10. Costa FO, Antunes PM (2012) The contribution of the barcode of life initiative to the discovery and monitoring of biodiversity. In: Mendonca A, Cunha A, Chakrabarti R (eds) Natural resources, sustainability and humanity. Springer, Dordrecht, pp 37–68CrossRefGoogle Scholar
  11. Destombe C, Valero M, Guillemin ML (2010) Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: resurrection of the species G. dura previously described in the Northern Atlantic 200 years ago. J Phycol 46:720–727CrossRefGoogle Scholar
  12. Dumilag RV, Aguinaldo ZA (2017) Genetic differentiation and distribution of Pyropia acanthophora (Bangiales, Rhodophyta) in the Philippines. Eur J Phycol 52:104–115CrossRefGoogle Scholar
  13. Dumilag RV, Orosco FL, Lluisma AO (2016) Genetic diversity of Kappaphycus species (Gigartinales, Rhodophyta) in the Philippines. Syst Biodivers 14:441–451CrossRefGoogle Scholar
  14. Freshwater DW, Rueness J (1994) Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187–194CrossRefGoogle Scholar
  15. Gavio B, Fredericq S (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur J Phycol 37:349–359CrossRefGoogle Scholar
  16. Geraldino PJL, Yang E-C, Boo S-M (2006) Morphology and molecular phylogeny of Hypnea flexicaulis (Gigartinales, Rhodophyta) from Korea. Algae 21:417–423CrossRefGoogle Scholar
  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  18. Heaney LR, Walsh JS, Peterson AT (2005) The roles of geological history and colonization abilities in genetic differentiation between mammalian populations in the Philippine archipelago. J Biogeogr 32:229–247CrossRefGoogle Scholar
  19. Hernández-Kantún JJ, Sherwood AR, Riosmena-Rodriguez R, Huisman JM, De Clerck O (2012) Branched Halymenia species (Halymeniaceae, Rhodophyta) in the Indo-Pacific region, including descriptions of Halymenia hawaiiana sp. nov. and H. tondoana sp. nov. Eur J Phycol 47:421–432CrossRefGoogle Scholar
  20. Hu ZM, Li JJ, Sun ZM, Oak JH, Zhang J, Fresia P, Grant WS, Duan DL (2015) Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Mol Ecol 24:5020–5033PubMedCrossRefGoogle Scholar
  21. Hughes AC (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8:e01624CrossRefGoogle Scholar
  22. Jobb G, von Haeseler A, Strimmer K (2004) TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol 4:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kawaguchi S, Shimada S, Abe T, Terada R (2006) Morphological and molecular phylogenetic studies of a red alga, Halymenia durvillei, (Halymeniaceae, Halymeniales) from Indo-Pacific. Coast. Mar Sci 30:201–208Google Scholar
  24. Krayesky DM, Norris JN, Gabrielson PW, Gabriel D, Fredericq S (2009) A new order of red algae based on the Peyssonneliaceae, with an evaluation of the ordinal classification of the Florideophyceae (Rhodophyta). Proc Biol Soc Wash 122:364–391CrossRefGoogle Scholar
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  26. Lim PE, Tan J, Phang SM, Nikmatullah A, Hong DD, Sunarpi H, Hurtado AQ (2013) Genetic diversity of Kappaphycus Doty and Eucheuma J. Agardh (Solieriaceae, Rhodophyta) in Southeast Asia. J Appl Phycol 26:1253–1272CrossRefGoogle Scholar
  27. Lin S-M, Liang H-Y, Hommersand MH (2008) Two types of auxiliary cell ampullae in Grateloupia (Halymeniaceae, Rhodophyta), including G. taiwanensis sp. nov. and G. orientalis sp. nov. from Taiwan based on rbcL gene sequences analysis and cystocarp development. J Phycol 44:196–214PubMedCrossRefGoogle Scholar
  28. Manghisi A, Morabito M, Boo GH, Boo SM, Bonillo C, De Clerck O, Le Gall L (2015) Two novel species of Yonagunia (Halymeniales, Rhodophyta) were uncovered in the South of Madagascar during the Atimo-Vatae expedition. Cryptogam Algol 36:199–217CrossRefGoogle Scholar
  29. Mattio L, Payri C (2010) Assessment of five markers as potential barcodes for identifying Sargassum subgenus Sargassum species (Phaeophyceae, Fucales). Cryptogam Algol 31:467–485Google Scholar
  30. McIvor L, Maggs CA, Provan J, Stanhope MJ (2001) rbcL sequences reveal multiple cryptic introductions of the Japanese red alga Polysiphonia harveyi. Mol Ecol 10:911–919PubMedCrossRefGoogle Scholar
  31. Ng P-K, Lim P-E, Phang S-M (2015) Small-scale genetic structure of Gracilaria salicornia and its red algal parasite, G. babae (Gracilariaceae, Rhodophyta), in Malaysia. Bot Mar 58:175–187CrossRefGoogle Scholar
  32. Ng P-K, Lin S-M, Lim P-E, Hurtado AQ, Phang S-M, Yow Y-Y, Sun Z (2017) Genetic and morphological analyses of Gracilaria firma and G. changii (Gracilariaceae, Rhodophyta), the commercially important agarophytes in western Pacific. PLoS One 12:e0182176PubMedPubMedCentralCrossRefGoogle Scholar
  33. Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O (2013) Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc Biol Sci 280:20122660PubMedPubMedCentralCrossRefGoogle Scholar
  34. Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108PubMedCrossRefGoogle Scholar
  35. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  36. Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017) Dna SP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34:3299–3302CrossRefGoogle Scholar
  37. Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc Lond B 360:1879–1888CrossRefGoogle Scholar
  38. Saunders GW (2008) A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia. Botany 86:773–789CrossRefGoogle Scholar
  39. Saunders GW, Moore TE (2013) Refinements for the amplification and sequencing of red algal DNA barcode and red ToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28:31–43CrossRefGoogle Scholar
  40. Schneider CW, Lane CE, Saunders GW (2010) Notes on the marine algae of the Bermudas. II. More additions to the benthic flora and a phylogenetic assessment of Halymenia pseudofloresii (Halymeniales, Rhodophyta) from its type locality. Phycologia 49:154–168CrossRefGoogle Scholar
  41. Sherwood AR, Zuccarello GC (2016) Phylogeography of tropical Pacific marine algae. In: Hu ZM, Fraser C (eds) Seaweed Phylogeography. Adaptation and evolution of seaweeds under environmental change. Springer, Dordrecht, pp 211–226CrossRefGoogle Scholar
  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Bio Evol 30:2725–2729CrossRefGoogle Scholar
  43. Tan P-L, Lim P-E, Lin S-M, Phang S-M, Draisma SGA, Liao LM (2015) Foliose Halymenia species (Halymeniaceae, Rhodophyta) from Southeast Asia, including a new species, Halymenia malaysiana sp. nov. Bot Mar 58:203–217CrossRefGoogle Scholar
  44. Tan P-L, Lim P-E, Lin S-M, Phang S-M (2018) Halymenia johorensis sp. nov. (Halymeniaceae, Rhodophyta), a new foliose red algal species from Malaysia. J Appl Phycol 30:187–195CrossRefGoogle Scholar
  45. Tanabe AS (2007) Kakusan: a computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol Ecol Notes 7:962–964CrossRefGoogle Scholar
  46. Uwai S, Nelson W, Neill K, Wang WD, Aguilar-Rosas LE, Boo SM, Kitayama T, Kawai H (2006) Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45:687–695CrossRefGoogle Scholar
  47. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  48. Wiriyadamrikul J, Park JK, Lewmanomont K, Boo SM (2010) Additional records of Gelidiella fanii (Gelidiales, Rhodophyta) from the western Pacific based on morphology, rbcL and cox1 analyses. Bot Mar 53:343–350CrossRefGoogle Scholar
  49. Wittmann W (1965) Aceto-iron-haematoxylin-chloral hydrate for chromosome staining. Stain Technol 40:161–164CrossRefGoogle Scholar
  50. Wurster CM, Bird MI, Bull ID, Creed F, Bryant C, Dungait JA, Paz V (2010) Forest contraction in north equatorial Southeast Asia during the Last Glacial Period. Proc Natl Acad Sci U S A 107:15508–15511PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wyrtki K (1961) Physical oceanography of the Southeast Asian waters. Scientific results of marine investigations of the South China Sea and the Gulf of Thailand 1959–1961, vol 2. Scripps Institution of Oceanography, La Jolla, California, p 195Google Scholar
  52. Xie ZY, Lin S-M, Liu L-C, Ang PO, Shyu J-F (2015) Genetic diversity and taxonomy of foliose Bangiales (Rhodophyta) from Taiwan based on rbcL and cox1 sequences. Bot Mar 58:189–202CrossRefGoogle Scholar
  53. Yang EC, Kim MS, Geraldino PJL, Sahoo D, Shin JA, Boo SM (2008) Mitochondrial cox1 and plastid rbcL genes of Gracilaria vermiculophylla (Gracilariaceae, Rhodophyta). J Appl Phycol 20:161–168CrossRefGoogle Scholar
  54. Yang MY, Geraldino PJL, Kim MS (2013) DNA barcode assessment of Gracilaria salicornia (Gracilariaceae, Rhodophyta) from Southeast Asia. Bot Stud 54:27PubMedPubMedCentralCrossRefGoogle Scholar
  55. Yang MY, Kim MS (2014) Taxonomy of Grateloupia (Halymeniales, Rhodophyta) by DNA barcode marker analysis and a description of Pachymeniopsis volvita sp. nov. J Appl Phycol 27:1373–1384CrossRefGoogle Scholar
  56. Yow YY, Lim PE, Phang SM (2011) Genetic diversity of Gracilaria changii (Gracilariacea, Rhodophyta) from west coast, Peninsular Malaysia based on mitochondrial cox1 gene analysis. J Appl Phycol 23:219–226CrossRefGoogle Scholar
  57. Yow YY, Lim PE, Phang SM (2013) Assessing the use of mitochondrial cox1 gene and cox2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia. J Appl Phycol 25:831–838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Ocean and Earth SciencesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Institute of Biological SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungRepublic of China
  4. 4.Excellence Center for Biodiversity of Peninsular Thailand, Department of Biology, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  5. 5.Graduate School of Biosphere ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations