Advertisement

Journal of Applied Phycology

, Volume 30, Issue 6, pp 3351–3359 | Cite as

Cloning of ho gene from Gracilariopsis lemaneiformis and study on its function on the synthesis of a fluorescent phycoerythrobilin in heterologous hosts

  • Yuming Jin
  • Xiaonan ZangEmail author
  • Xiaoyun Huang
  • Xuexue Cao
  • Deguang Sun
  • Jiaojiao Lin
  • Zhu Liu
  • Chang Liu
  • Yalin Guo
  • Zhendong Wang
  • Lulu Hou
8th Asian Pacific Phycological Forum

Abstract

Heme oxygenase catalyzes the rate-limiting step in the degradation of heme to biliverdin. Two new genes of heme oxygenases, ho-1 and ho-2, were cloned from the red alga Gracilariopsis lemaneiformis. Their corresponding proteins both belonged to Heme 0 superfamily. The full-length DNA of ho-1 contained 696 nucleotides encoding a protein of 231 amino acids, and the full-length DNA of ho-2 contained 819 nucleotides encoding a protein of 272 amino acids. In order to study the functions of HO-1 and HO-2 in synthesis of phycoerythrobilin, plasmids pET-24a(+)-ho1-pebA-pebB and pET-24a(+)-ho2-pebA-pebB were constructed (pebA, pebB were the coding genes of ferredoxin-dependent bilin reductases (FDBRs) of G. lemaneiformis that were cloned by our laboratory). Then these two plasmids were co-transformed with pACYC-Duet-peBA (peBA was the coding gene of two subunits of apo-phycoerythrin), respectively, into E.coli BL21 (DE3). The recombinant proteins presented the characteristic peak of phycoerythrin at 580 nm by fluorescence spectroscopy detection, and the maximum peak appeared at 15 h. The study of heme oxygenase had a positive effect on studying of the pathway for the synthesis of a fluorescent phycoerythrobilin in Gracilariopsis lemaneiformis.

Keywords

Gracilariopsis lemaneiformis Rhodophyta Heme oxygenase Phycoerythrobilin Heterologous recombinant expression 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (Grant no. 31472255).

References

  1. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858CrossRefGoogle Scholar
  2. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258CrossRefGoogle Scholar
  3. Biswas A, Boutaghou MN, Alvey RM, Kronfel CM, Cole RB, Bryant DA, Schluchter WM (2011) Characterization of the activities of the CpeY, CpeZ, and CpeS bilin lyases in phycoerythrin biosynthesis in Fremyella diplosiphon strain UTEX 481. J Biol Chem 286:35509–35521CrossRefGoogle Scholar
  4. Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51:951–960CrossRefGoogle Scholar
  5. Dammeyer T, Frankenberg-Dinkel N (2006) Insights into phycoerythrobilin biosynthesis point toward metabolic channeling. J Biol Chem 281:27081–27089CrossRefGoogle Scholar
  6. Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N (2008) Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol 18:442–448CrossRefGoogle Scholar
  7. Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984CrossRefGoogle Scholar
  8. Huang X, Zang X, Wu F, Jin Y, Wang H, Liu C, Ding Y, He B, Xiao D, Song X, Liu Z (2017) Transcriptome sequencing of Gracilariopsis lemaneiformis to analyze the genes related to optically active phycoerythrin synthesis. PLoS One 12:e0170855CrossRefGoogle Scholar
  9. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9CrossRefGoogle Scholar
  10. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  11. Ledermann B, Beja O, Frankenberg-Dinkel N (2016) New biosynthetic pathway for pink pigments from uncultured oceanic viruses. Environ Microbiol 18:4337–4347CrossRefGoogle Scholar
  12. Li MY, Cao ZY, Shen WB, Cui J (2011) Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 486:47–55CrossRefGoogle Scholar
  13. Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006) The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. FEBS J 273:2594–2606CrossRefGoogle Scholar
  14. Muramoto T, Tsurui N, Terry MJ, Yokota A, Kohchi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis. Plant Physiol 130:1958–1966CrossRefGoogle Scholar
  15. Richaud C, Zabulon G (1997) The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc Natl Acad Sci U S A 94:11736–11741CrossRefGoogle Scholar
  16. Sapay N, Guermeur Y, Deleage G (2006) Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinf 7:255CrossRefGoogle Scholar
  17. Shen G, Saunee NA, Williams SR, Gallo EF, Schluchter WM, Bryant DA (2006) Identification and characterization of a new class of bilin lyase—the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to CYS-153 on the β-subunit of phycocyanin in Synechococcus sp PCC 7002. J Biol Chem 281:17768–17778CrossRefGoogle Scholar
  18. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, pp 571–607.  https://doi.org/10.1385/1-59259-890-0:571
  19. Willows RD, Mayer SM, Foulk MS, DeLong A, Hanson K, Chory J, Beale SI (2000) Phytobilin biosynthesis: the Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thalianna hy1 mutant. Plant Mol Biol 43:113–120CrossRefGoogle Scholar
  20. Wu H, Zheng Y, Liu J, Zhang H, Chen H (2015) Heme oxygenase-1 delays gibberellin-induced programmed cell death of rice aleurone layers subjected to drought stress by interacting with nitric oxide. Front Plant Sci 6:1267PubMedGoogle Scholar
  21. Wu F, Zang X, Zhang X, Zhang R, Huang X, Hou L, Jiang M, Liu C, Pang C (2016) Molecular cloning of cpcU and heterodimeric bilin lyase activity analysis of CpcU and CpcS for attachment of phycocyanobilin to Cys-82 on the β-subunit of phycocyanin in Arthrospira platensis FACHB314. Molecules 21:357CrossRefGoogle Scholar
  22. Xie Y, Mao Y, Xu S, Zhou H, Dun X, Cui W, Zhang J, Xu G (2015) Heme-heme oxygenase 1 system is involved in ammonium tolerance by regulating antioxidant defence in Oryza sativa. Plant Cell Environ 38:129–143CrossRefGoogle Scholar
  23. Zhao KH, Wu D, Wang L, Zhou M, Storf M, Bubenzer C, Strohmann B, Scheer H (2002) Characterization of phycoviolobilin phycoerythrocyanin-α84-cystein-lyase-(isomerizing) from Mastigocladus laminosus. Eur J Biochem 269:4542–4550CrossRefGoogle Scholar
  24. Zhao KH, Su P, Tu JM, Wang X, Liu H, Plöscher M, Eichacker L, Yang B, Zhou M, Scheer H (2007) Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteins. Proc Natl Acad Sci USA 104:14300–14305CrossRefGoogle Scholar
  25. Zou D, Gao K (2014) Temperature response of photosynthetic light- and carbon-use characteristics in the red seaweed Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta). J Phycol 50:366–375CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yuming Jin
    • 1
  • Xiaonan Zang
    • 1
    Email author
  • Xiaoyun Huang
    • 1
  • Xuexue Cao
    • 1
  • Deguang Sun
    • 1
  • Jiaojiao Lin
    • 1
  • Zhu Liu
    • 1
  • Chang Liu
    • 1
  • Yalin Guo
    • 1
  • Zhendong Wang
    • 1
  • Lulu Hou
    • 1
  1. 1.Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of EducationQingdaoChina

Personalised recommendations