Journal of Applied Phycology

, Volume 30, Issue 6, pp 3373–3378 | Cite as

Halogenated chamigrane sesquiterpenes from Bornean Laurencia majuscula

  • Takashi Kamada
  • Chin-Soon Phan
  • Vivian Shi-Ting Sien
  • Charles Santhanaraju VairappanEmail author
8th Asian Pacific Phycological Forum


The red alga genus Laurencia (Rhodomelaceae, Ceramiales) is known to produce and contain a rich diversity of halogenated secondary metabolites. These compounds are dominated by two major biosynthetic groups: terpenes (sesquiterpenes, diterpenes, and triterpenes) and C15-acetogenins. In the course of our investigation on red algae genus Laurencia from North Borneo Island, three new halogenated chamigranes, 7-aldehydelaurencenone B (1), 2-chloro-3-methoxy-α-chamigren-9-one (2), and laureborneone (3) along with five known halogenated derivatives such as [1(15)Z,2Z,4R,8S,9R]-8,15-dibromochamigra-1(15),2,11(12)-trien-9-ol (4), [1(15)E,2Z,4R,8S,9R]-8,15-dibromochamigra-1(15),2,11(12)-trien-9-ol (5), ma’ilion (6), laurencenone B (7), and 2-chloro-3-hydroxy-α-chamigren-9-one (8) were isolated from Laurencia majuscula. The structures of these compounds were determined based on spectroscopic data which consisted of infrared (FT-IR), H1-NMR, C13-NMR, H1-H1-COSY, HSQC, HMBC, and NOESY. In addition, high-resolution electrospray ionization mass spectrometry (HRESIMS) was done to calculate their molecular formula and unsaturation index. The anticancer potentials of these compounds were tested against three cancer cell lines, and their IC50 values were determined.


Laurencia majuscula Rhodomelaceae Red alga Cytotoxicity Halogenated chamigrane Chemical race 



We are grateful to the Sabah Parks for the support and assistance during field survey.


This work was financially supported by the Sabah Biodiversity Centre [GL0070].


  1. Bittner ML, Silva M, Paul VJ, Fenical W (1985) A rearranged chamigrene derivative and its potential biogenetic precursor from a new species of the marine red algal genus Laurencia (Rhodomelaceae). Phytochemistry 24:987–989CrossRefGoogle Scholar
  2. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49PubMedCrossRefGoogle Scholar
  3. Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety of Laurencia obtusa. Phytochemistry 26:1053–1057CrossRefGoogle Scholar
  4. Buckingham J (1993) Dictionary of natural products. Chapman and Hall/CRC Press, Florida, p 979Google Scholar
  5. Coll JC, Wright AD (1989) Tropical marine algae. III. New sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust J Chem 42:1591–1603CrossRefGoogle Scholar
  6. Davyt D, Fernandez R, Suescun L, Mombrú AW, Saldaña J, Domínguez L, Coll J, Fujii MT, Manta E (2001) New sesquiterpene derivatives from the red alga Laurencia scoparia. Isolation, structure determination, and anthelmintic activity. J Nat Prod 64:1552–1555PubMedCrossRefGoogle Scholar
  7. Dorta E, Díaz-Marrero AR, Cueto M, D’Croz L, Maté JL, Darias J (2004) Chamigrenelactone, a polyoxygenated sesquiterpene with a novel structural type and devoid of halogen from Laurencia obtusa. Tetrahedron Lett 45:7065–7068CrossRefGoogle Scholar
  8. Faulkner DJ (1988) Marine natural products. Nat Prod Rep 5:613–663PubMedCrossRefGoogle Scholar
  9. Fenical W, Norris JN (1975) Chemotaxonomy in marine algae: chemical separation of some Laurencia species (Rhodophyta) from the Gulf of California. J Phycol 11:104–108Google Scholar
  10. Juagdan EG, Kalidindi R, Scheuer P (1997) Two new chamigranes from an Hawaiian red alga, Laurencia cartilaginea. Tetrahedron 53:521–528CrossRefGoogle Scholar
  11. Kamada T, Vairappan CS (2015) New laurene-type sesquiterpene from Bornean Laurencia nangii. Nat Prod Commun 10:843–844PubMedGoogle Scholar
  12. Kamada T, Vairappan CS (2017) Non-halogenated new sesquiterpenes from Bornean Laurencia snackeyi. Nat Prod Res 31:333–340PubMedCrossRefGoogle Scholar
  13. Kennedy DJ, Selby IA, Thomson RH (1988) Chamigrane metabolites from Laurencia obtusa and L. scoparia. Phytochemistry 27:1761–1766CrossRefGoogle Scholar
  14. Lhullier C, Donnangelo A, Caro M, Palermo JA, Horta PA, Falkenberg M, Schenkel EP (2009) Isolation of elatol from Laurencia microcladia and its palatability to the sea urchin Echinometra lucunter. Biochem Syst Ecol 37:254–259CrossRefGoogle Scholar
  15. Machado FLS, Lima WP, Bergmann BR, Gestinari LMS, Fujii MT, Paula JC, Costa SS, Lopes NP, Kaiser CR, Soares AR (2011) Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea. Planta Med 77:733–735CrossRefGoogle Scholar
  16. Martin JD, Darias J (1978) Chemical and biological perspectives. In: Scheuer PJ (ed) Marine natural products. Academic Press, New York, pp 125–174Google Scholar
  17. Masuda M, Abe T, Suzuki T, Suzuki M (1996) Morphological and chemotaxonomic studies on Laurencia composita and L. okamurae (Ceramiales, Rhodophyta). Phycologia 35:550–562CrossRefGoogle Scholar
  18. Nagappan T, Ramasamy P, Wahid ME, Segaran TC, Vairappan CS (2011) Biological activity of carbazole and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules 16:9651–9664PubMedPubMedCentralCrossRefGoogle Scholar
  19. Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, Matsuura H, Kaneko K, Ishii T, Suzuki M, Yoshihara E, Nogata Y, Okino T (2017) New marine antifouling compounds from the red alga Laurencia sp. Mar Drugs 15:267–276PubMedCentralCrossRefGoogle Scholar
  20. Suzuki M, Kurosawa E (1978) Two new halogenated sesquiterpenes from the red alga Laurencia majuscula Harvey. Tetrahedron Lett 48:4805–4808CrossRefGoogle Scholar
  21. Suzuki M, Vairappan CS (2005) Halogenated secondary metabolites from Japanese species of the Japanese species of red algal genus Laurencia (Rhodomelaceae, Ceramiales). Curr Top Phytochem 7:1–34Google Scholar
  22. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259PubMedCrossRefGoogle Scholar
  23. Vairappan CS (2006) Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 18:611–617CrossRefGoogle Scholar
  24. Vairappan CS, Anangdan SP, Tan KL, Suzuki M (2010a) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305–311CrossRefGoogle Scholar
  25. Vairappan CS, Ang MY, Ong CY, Phang SM (2004) Biologically active polybrominated indoles in the red alga Laurencia similis from the coastal waters of Sabah (Rhodomelaceae, Ceramiales). Malay J Sci 23:119–126Google Scholar
  26. Vairappan CS, Chung CS, Hurtado AQ, Soya FE, Lhonneur GB, Critchley A (2007) Distribution and symptoms of epiphyte infection in major carrageenophyte-producing farms. In: Borowitzka MA, Critchley AT, Kraan S, Peters A, Sjøtun K, Notoya M (eds) Nineteenth International Seaweed Symposium. Springer, Dordrecht, pp 22–33Google Scholar
  27. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M (2001) Antibacterial halogenated metabolites from the Malaysian Laurencia species. Phytochemistry 58:291–297PubMedCrossRefGoogle Scholar
  28. Vairappan CS, Ishii T, Tan KL, Suzuki M, Zhan Z (2010c) Antibacterial activities of a new brominated diterpene from Bornean Laurencia spp. Mar Drugs 8:1743–1749PubMedPubMedCentralCrossRefGoogle Scholar
  29. Vairappan CS, Kamada T, Lee WW, Jeon YJ (2013) Anti-inflammatory activity of halogenated secondary metabolites of Laurencia snackeyi (Weber-van Bosse) Masuda in LPS-stimulated RAW 264.7 macrophages. J Appl Phycol 25:1805–1813CrossRefGoogle Scholar
  30. Wang BG, Gloer JB, Ji NY, Zhao JC (2013) Halogenated organic molecules of Rhodomelaceae origin: chemistry and biology. Chem Rev 113:3632–3685PubMedCrossRefGoogle Scholar
  31. White DE, Stewart IC, Grubbs RH, Stoltz BM (2008) The catalytic asymmetric total synthesis of elatol. J Am Chem Soc 130:810–811PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Natural Products Chemistry, Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluMalaysia

Personalised recommendations