Journal of Applied Phycology

, Volume 30, Issue 6, pp 3089–3102 | Cite as

Oxygenic and anoxygenic photosynthesis in a sewage pond

  • Piamsook Chandaravithoon
  • Siriporn Nakphet
  • Raymond J. RitchieEmail author
8th Asian Pacific Phycological Forum


Leachate sewage ponds at Phuket Integrated Waste Management (Phuket, Thailand) are typical hypereutrophic red-water ponds found at sewage treatment plants and piggery, feedlot and poultry waste ponds with mixed communities of anoxygenic purple photosynthetic bacteria (PPB) (Bacteriochlorophyll a) and Chlorella-type green algae (Chl a + b). In vivo integrating sphere spectrometer scans (Model A&E-S90-2D, A&E Lab (UK)) showed absorbance maxima at 678–680 nm (in vivo Chl a) and a double peak at 802 and 844 nm (in vivo BChl a). High Na2S (8.3 mol m−3) added to PM media selected for the PPB whereas Chlorella overwhelmed PPB in PM medium without high H2S. Photosynthetic electron transport rate (ETR) was measured using a blue-diode-based Junior PAM (Pulse Amplitude Modulation Fluorometer) on sewage pond leachate filtered onto glass fibre disks. Diuron herbicide resistance experiments allowed measurement of both oxygenic and anoxygenic photosynthesis of a mixed population of oxygenic and anoxygenic organisms to be estimated only in special circumstances. In separate culture, the ETR vs. E curves were Chlorella-type algae, Eopt ≈ 191 ± 10 μmol quanta m−2 s−1, ETRmax = 184 ± 6.7 μmol e g−1 Chl a s−1; PPB, Eopt = 386 ± 15 μmol quanta m−2 s−1, ETRmax = 316 ± 7.3 μmol e g−1 BChl a s−1 but in a mixture of Chlorella and PPB only the oxygenic photosynthesis could be detected. In sewage pond samples, PAM rapid light curves in the presence and absence of DCMU allowed separate estimates of oxygen and anoxygenic photosynthesis to be made only if the Chl a content was very low (Chl a ≈ 0.26 μg mL−1; BChl a ≈ 1.4 μg mL−1). If substantial amounts of Chl a were present, fluorescence from PSII overwhelmed the signal from RC-2 of PPB, preventing the detection of anoxygenic photosynthesis. New PAM technology to measure Chl a and BChl a fluorescence separately is needed.


Sewage leachate pond Oxygenic photosynthesis Anoxygenic photosynthesis Integrating sphere spectrophotometry PAM fluorometry 



The author wishes to thank Prince Songkla University-Phuket for providing facilities for the project. The project was partially funded by the Faculty of Technology and Environmental Science, Prince Songkla University-Phuket. The co-operation of Phuket Integrated Waste Management (Wichit Sub-district, Mueang Phuket, District, Phuket 83000, Thailand) in encouraging this study and allowing us to collect sewage pond water samples is gratefully acknowledged.

Supplementary material

10811_2018_1432_MOESM1_ESM.pdf (152 kb)
ESM 1 (PDF 151 kb)


  1. Apichatmeta K, Sudsiri CJ, Ritchie RJ (2017) Photosynthesis of oil palm (Elaeis guineensis). Sci Hortic 214:34–40CrossRefGoogle Scholar
  2. Belila B, Abbas B, Fazaa I, Saidi N, Snoussi M, Hassen A, Muyzer G (2013) Sulphur bacteria in wastewater stabilization ponds periodically affected by the “red-water” phenomenon. Appl Microbiol Biotechnol 97:379–394PubMedCrossRefGoogle Scholar
  3. Brestic M, Zivcak M (2013) PSII fluorescence techniques for measurement of drought and high temperature stress signal in plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular stress physiology in plants. Springer, Dordrecht, pp 87–131CrossRefGoogle Scholar
  4. Blankenship RE, Madigan MT, Bauer CE (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Cochran WG, Snedecor GW (1989) Statistical methods, 8th edn. Iowa State University Press, AmesGoogle Scholar
  6. Dewez B, Didur O, Vincent-Heroux J, Popovic R (2008) Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus. Environ Pollut 151:93–100PubMedCrossRefGoogle Scholar
  7. Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  8. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  9. Gitelson A, Stark R, Oron G, Dor I (1997) Monitoring of polluted water bodies by remote sensing. In: Remote sensing and geographic information systems for design and operation of water resources systems (Proceedings of Rabat Symposium S3, April 1997). IAHS Publ 242:181–188Google Scholar
  10. Gitelson A, Stark R, Dor I, Michielson O, Yacobi YZ (1999) Optical characteristics of the phototroph Thiocapsa roseopersicina and implication for real time monitoring of the bacteriochlorophyll concentration. Appl Environ Microbiol 65:3392–3397PubMedPubMedCentralGoogle Scholar
  11. Goericke R (2002) Bacteriochlorophyll a in the ocean: is anoxygenic bacterial photosynthesis important. Limnol Oceanogr 47:290–295CrossRefGoogle Scholar
  12. Haynes D, Ralph P, Pranges J, Dennison B (2000) The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Mar Pollut Bull 41:288–293CrossRefGoogle Scholar
  13. Hubas C, Jesus B, Passarelli C, Jeanthon C (2011) Tools providing new insight into coastal anoxygenic purple bacterial mats. Res Microbiol 162:858–868PubMedCrossRefGoogle Scholar
  14. Irving DE, Dromgoole FI (1986) Algal populations and characteristics of oxygen exchange of effluent samples from a facultative oxidation pond. N Z J Mar Fresh 20:9–16CrossRefGoogle Scholar
  15. Koelsch RK, Chen TT, Sculte DD (1997) Purple sulphur bacteria in anaerobic treatment lagoons. Nebraska Swine Rep Pap 205:36–38 Google Scholar
  16. Kim MK, Harwood CS (1991) Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol Lett 83:199–203Google Scholar
  17. Kim JK, Lee BK (2000) Mass production of Rhodopseudomonas palustris as diet for aquaculture. Aquac Eng 23:281–293CrossRefGoogle Scholar
  18. Kim MK, Choi K-M, Yin C-R, Lee K-Y, Im WT, Lim JH, Lee ST (2004) Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett 26:819–822PubMedCrossRefGoogle Scholar
  19. Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179PubMedCrossRefGoogle Scholar
  20. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres JLT, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22:55–61PubMedCrossRefGoogle Scholar
  21. Nicholls HW (1973) Culture media-freshwater. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements, vol 1. Cambridge University Press, Cambridge, pp 7–24Google Scholar
  22. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 2005:4822–4832Google Scholar
  23. Porra RJ (2006) Spectrometric assays for plant, algal and bacterial chlorophylls. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls. Springer, Dordrecht, pp 95–107CrossRefGoogle Scholar
  24. Quinnell R, Howell D, Ritchie RJ (2017) Photosynthesis of an epiphytic resurrection fern Davallia angustata (Wall, ex Hook. & Grev.) Aust J Bot 65:348–356CrossRefGoogle Scholar
  25. Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222–237CrossRefGoogle Scholar
  26. Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405CrossRefGoogle Scholar
  27. Ritchie RJ (2006) Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41PubMedCrossRefGoogle Scholar
  28. Ritchie RJ (2008) Fitting light saturation curves measured using PAM fluorometry. Photosynth Res 96:201–215PubMedCrossRefGoogle Scholar
  29. Ritchie RJ (2013) The use of solar radiation by a photosynthetic bacterium, Rhodopseudomonas palustris: model simulation of conditions found in a shallow pond or flatbed reactor. Photochem Photobiol 89:1143–1162PubMedCrossRefGoogle Scholar
  30. Ritchie RJ (2015) Photosynthetic light curve fitting models. Available at [Verified 26 May 2016]
  31. Ritchie RJ (2018) Measurement of chlorophylls a and b and bacteriochlorophyll a in organisms from hypereutrophic auxinic waters. J Appl Phycol.
  32. Ritchie RJ, Larkum AWD (2013) Modelling photosynthesis in shallow algal production ponds. Photosynthetica 50:481–500CrossRefGoogle Scholar
  33. Ritchie RJ, Larkum AWD, Ribas A (2017) Could photosynthesis function on Proxima Centauri b? Int J Astrobiol:1–30Google Scholar
  34. Ritchie RJ, Mekjinda N (2015) Measurement of photosynthesis using PAM technology in a purple sulphur bacterium Thermochromatium tepidum (Chromatiaceae). Photochem Photobiol 91:350–358PubMedCrossRefGoogle Scholar
  35. Ritchie RJ, Runcie JW (2013) Measurement of the photosynthetic electron transport rate in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina using PAM fluorometry. Photochem Photobiol 89:370–383PubMedCrossRefGoogle Scholar
  36. Ritchie RJ, Runcie JW (2014) A portable reflectance-absorptance-transmittance (RAT) meter for vascular plant leaves. Photosynthetica 52:614–626CrossRefGoogle Scholar
  37. Siefert E, Irgens RL, Pfennig N (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl Environ Microbiol 35:38–41PubMedPubMedCentralGoogle Scholar
  38. Sinning I (1992) Herbicide binding in the bacterial photosynthetic reaction center. TIBS 17:150–154PubMedGoogle Scholar
  39. Sinning I, Michel H, Mathis P, Rutherford AW (1989) Terbutryn resistance in a purple bacterium can induce sensitivity toward the plant herbicide DCMU. FEBS Lett 256:192–194CrossRefGoogle Scholar
  40. Sinning I, Koepke J, Michel H (1990) Recent advances in the structure analysis of Rhodopseudomonas viridis reaction center mutants. In: Michel-Bayerle M-E (ed) Reaction centers of photosynthetic bacteria. Springer-Verlag, Berlin, pp 199–208CrossRefGoogle Scholar
  41. Takahashi M, Ichimura S (1970) Photosynthetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnol Oceanogr 15:929–944CrossRefGoogle Scholar
  42. van Niel CB (1944) The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bacteriol Rev 8:1–118PubMedPubMedCentralGoogle Scholar
  43. van Niel CB (1971) Techniques for the enrichment, isolation and maintenance of the photosynthetic bacteria. Methods Enzymol 23:3–28CrossRefGoogle Scholar
  44. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724PubMedPubMedCentralGoogle Scholar
  45. Zhang D, Yang H, Huang Z, Zhang W, Liu S-J (2002) Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int J Syst Evol Microbiol 52:2055–2060PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Piamsook Chandaravithoon
    • 1
  • Siriporn Nakphet
    • 1
  • Raymond J. Ritchie
    • 1
    Email author
  1. 1.Tropical Environmental Plant Biology Unit, Faculty of Technology and EnvironmentPrince of Songkla UniversityPhuket CampusThailand

Personalised recommendations