Advertisement

Maternal Dyslipidemia, Plasma Branched-Chain Amino Acids, and the Risk of Child Autism Spectrum Disorder: Evidence of Sex Difference

  • Anita A. Panjwani
  • Yuelong Ji
  • Jed W. Fahey
  • Amanda Palmer
  • Guoying Wang
  • Xiumei Hong
  • Barry Zuckerman
  • Xiaobin WangEmail author
Original Paper

Abstract

In contrast to the well-observed associations between obesity, diabetes, and autism spectrum disorder (ASD), the roles of maternal dyslipidemia and sex disparity in ASD have not been well-studied. We examined the joint associations of maternal plasma cholesterols, branched-chain amino acids (BCAAs) and child sex on child ASD risk. We analyzed data from 756 mother-infant pairs (86 ASD) from the Boston Birth Cohort. Maternal plasma cholesterols and BCAAs were measured in samples collected 24–72 h postpartum. We found that in this urban, low-income prospective birth cohort, low maternal high-density lipoprotein cholesterol (HDL-C), above-median maternal plasma BCAA concentrations, and male sex additively or synergistically increased risk of ASD. Additional studies are necessary to confirm our findings.

Keywords

Autism spectrum disorder Maternal cholesterols Pre- and perinatal risk factors Sex differences Branched-chain amino acids Metabolomics 

Notes

Acknowledgments

The authors would like to thank all the study participants and staff as the study would not have been possible without their support and participation. This work is supported by the Health Resources and Services Administration (HRSA) of the US Department of Health and Human Services (HHS) under Grant Numbers R40MC27443 and UJ2MC31074. The Boston Birth Cohort (parent study) is supported in part by the March of Dimes PERI Grants (20-FY02-56, #21-FY07-605); and the National Institutes of Health (NIH) Grants (R21ES011666, 2R01HD041702, R21HD066471, U01AI090727, R21AI079872, and R01HD086013). This information or content and conclusions are those of the authors and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS, or the U.S. Government. The authors do not have any conflicts of interest to disclose.

Author contributions

AAP conceptualized the study, performed the statistical analysis, participated in the interpretation of the data, and drafted the manuscript. YJ conceptualized the study and assisted in statistical analysis and interpretation of the data. JWF and AP conceptualized the study and participated in the interpretation of the data. GW and XH participated in the design and coordination of the study and data cleaning. BZ oversaw and managed participant recruitment, follow-up, and data collection. XW is the founder and principal investigator of the Boston Birth Cohort and oversaw participant recruitment, follow-up and data collection, conceptualized the study, and provided critical input on study design, data analyses, interpretation of data, and initial draft of the manuscript. All authors critically reviewed and approved the final manuscript.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

10803_2019_4264_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 4029 kb)

References

  1. Anderson, T. W., & Rubin, H. (1956). Statistical inference in factor analysis. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 3(5), 111–150.Google Scholar
  2. Aneja, A., & Tierney, E. (2008). Autism: The role of cholesterol in treatment. International Review of Psychiatry, 20(2), 165–170.  https://doi.org/10.1080/09540260801889062.CrossRefPubMedGoogle Scholar
  3. Barker, D. J., Eriksson, J. G., Forsen, T., & Osmond, C. (2002). Fetal origins of adult disease: Strength of effects and biological basis. International Journal of Epidemiology, 31(6), 1235–1239.CrossRefGoogle Scholar
  4. Bent, S., Lawton, B., Warren, T., Widjaja, F., Dang, K., Fahey, J. W., et al. (2018). Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism, 9(1), 35.  https://doi.org/10.1186/s13229-018-0218-4.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cartocci, V., Tonini, C., Di Pippo, T., Vuono, F., Schiavi, S., Marino, M., et al. (2019). Prenatal exposure to valproate induces sex-, age-, and tissue-dependent alterations of cholesterol metabolism: Potential implications on autism. Journal of Cellular Physiology, 234(4), 4362–4374.  https://doi.org/10.1002/jcp.27218.CrossRefPubMedGoogle Scholar
  6. Chiarla, C., Giovannini, I., Siegel, J. H., Boldrini, G., Coleman, W. P., & Castagneto, M. (1990). Relationship of plasma cholesterol level to doses of branch-chain amino acids in sepsis. Critical Care Medicine, 18(1), 32–36.CrossRefGoogle Scholar
  7. Dziobek, I., Gold, S. M., Wolf, O. T., & Convit, A. (2007). Hypercholesterolemia in Asperger syndrome: Independence from lifestyle, obsessive–compulsive behavior, and social anxiety. Psychiatry Research, 149(1), 321–324.  https://doi.org/10.1016/j.psychres.2006.02.003.CrossRefPubMedGoogle Scholar
  8. Edison, R. J., Berg, K., Remaley, A., Kelley, R., Rotimi, C., Stevenson, R. E., et al. (2007). Adverse birth outcome among mothers with low serum cholesterol. Pediatrics, 120(4), 723–733.  https://doi.org/10.1542/peds.2006-1939.CrossRefPubMedGoogle Scholar
  9. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499–502.PubMedGoogle Scholar
  10. Garcia-Serna, A. M., & Morales, E. (2019). Neurodevelopmental effects of prenatal vitamin D in humans: Systematic review and meta-analysis. Molecular Psychiatry.  https://doi.org/10.1038/s41380-019-0357-9.CrossRefPubMedGoogle Scholar
  11. Gillberg, C., Fernell, E., Kocovska, E., Minnis, H., Bourgeron, T., Thompson, L., et al. (2017). The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: A hypothesis paper. Autism Research, 10(6), 1022–1044.  https://doi.org/10.1002/aur.1777.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Huang, P. L. (2009). A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms, 2(5–6), 231–237.  https://doi.org/10.1242/dmm.001180.CrossRefGoogle Scholar
  13. Ji, Y., Riley, A. W., Lee, L. C., Volk, H., Hong, X., Wang, G., et al. (2018). A prospective birth cohort study on maternal cholesterol levels and offspring attention deficit hyperactivity disorder: New insight on sex differences. Brain Sciences, 8(1), 3.  https://doi.org/10.3390/brainsci8010003.CrossRefGoogle Scholar
  14. Jiang, S., Jiang, J., Xu, H., Wang, S., Liu, Z., Li, M., et al. (2017). Maternal dyslipidemia during pregnancy may increase the risk of preterm birth: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology, 56(1), 9–15.  https://doi.org/10.1016/j.tjog.2016.07.012.CrossRefPubMedGoogle Scholar
  15. Jin, W., Lin, S., Hou, R., Chen, X., Han, T., Jin, Y., et al. (2016). Associations between maternal lipid profile and pregnancy complications and perinatal outcomes: A population-based study from China. BMC Pregnancy and Childbirth, 16(1), 60.  https://doi.org/10.1186/s12884-016-0852-9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Joseph, R. M., O’Shea, T. M., Allred, E. N., Heeren, T., Hirtz, D., Paneth, N., et al. (2017). Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Research, 10(2), 224–232.  https://doi.org/10.1002/aur.1644.CrossRefPubMedGoogle Scholar
  17. Kilgore, M., Muntner, P., Woolley, J. M., Sharma, P., Bittner, V., & Rosenson, R. S. (2014). Discordance between high non-HDL cholesterol and high LDL-cholesterol among US adults. Journal of Clinical Lipidology, 8(1), 86–93.  https://doi.org/10.1016/j.jacl.2013.11.001.CrossRefPubMedGoogle Scholar
  18. Knol, M. J., VanderWeele, T. J., Groenwold, R. H., Klungel, O. H., Rovers, M. M., & Grobbee, D. E. (2011). Estimating measures of interaction on an additive scale for preventive exposures. European Journal of Epidemiology, 26(6), 433–438.  https://doi.org/10.1007/s10654-011-9554-9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kujala, U. M., Peltonen, M., Laine, M. K., Kaprio, J., Heinonen, O. J., Sundvall, J., et al. (2016). Branched-chain amino acid levels are related with surrogates of disturbed lipid metabolism among older men. Frontiers in Medicine, 3, 57.  https://doi.org/10.3389/fmed.2016.00057.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383(9920), 896–910.  https://doi.org/10.1016/S0140-6736(13)61539-1.CrossRefPubMedGoogle Scholar
  21. Laz, T., Rahman, M., & Berenson, A. (2013). Trends in serum lipids and hypertension prevalence among non-pregnant reproductive-age women: United states national health and nutrition examination survey 1999–2008. Maternal and Child Health Journal, 17(8), 1424–1431.  https://doi.org/10.1007/s10995-012-1148-y.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lei, X. Y., Li, Y. J., Ou, J. J., & Li, Y. M. (2018). Association between parental body mass index and autism spectrum disorder: A systematic review and meta-analysis. European Child & Adolescent Psychiatry.  https://doi.org/10.1007/s00787-018-1259-0.CrossRefGoogle Scholar
  23. Lepsch, J., Eshriqui, I., Farias, D. R., Vaz, J. S., Cunha Figueiredo, A. C., Adegboye, A. R. A., et al. (2017). Association between early pregnancy vitamin D status and changes in serum lipid profiles throughout pregnancy. Metabolism, 70, 85–97.  https://doi.org/10.1016/j.metabol.2017.02.004.CrossRefPubMedGoogle Scholar
  24. Li, M., Fallin, M. D., Riley, A., Landa, R., Walker, S. O., Silverstein, M., et al. (2016). The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics, 137(2), e20152206.  https://doi.org/10.1542/peds.2015-2206.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Limperopoulos, C., Bassan, H., Sullivan, N. R., Soul, J. S., Robertson, R. L., Jr., Moore, M., et al. (2008). Positive screening for autism in ex-preterm infants: Prevalence and risk factors. Pediatrics, 121(4), 758–765.  https://doi.org/10.1542/peds.2007-2158.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Loomes, R., Hull, L., & Mandy, W. P. L. (2017). What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 56(6), 466–474.  https://doi.org/10.1016/j.jaac.2017.03.013.CrossRefPubMedGoogle Scholar
  27. Lu, J., Xie, G., Jia, W., & Jia, W. (2013). Insulin resistance and the metabolism of branched-chain amino acids. Frontiers of Medicine, 7(1), 53–59.  https://doi.org/10.1007/s11684-013-0255-5.CrossRefPubMedGoogle Scholar
  28. Lussu, M., Noto, A., Masili, A., Rinaldi, A. C., Dessì, A., De Angelis, M., et al. (2017). The urinary 1 H-NMR metabolomics profile of an Italian autistic children population and their unaffected siblings. Autism Research, 10(6), 1058–1066.  https://doi.org/10.1002/aur.1748.CrossRefPubMedGoogle Scholar
  29. Mari-Bauset, S., Zazpe, I., Mari-Sanchis, A., Llopis-Gonzalez, A., & Morales-Suarez-Varela, M. (2014). Food selectivity in autism spectrum disorders: A systematic review. Journal of Child Neurology, 29(11), 1554–1561.  https://doi.org/10.1177/0883073813498821.CrossRefPubMedGoogle Scholar
  30. Marseglia, L., Manti, S., D’Angelo, G., Cuppari, C., Salpietro, V., Filippelli, M., et al. (2015). Obesity and breastfeeding: The strength of association. Women and Birth: Journal of the Australian College of Midwives, 28(2), 81–86.  https://doi.org/10.1016/j.wombi.2014.12.007.CrossRefGoogle Scholar
  31. Modabbernia, A., Velthorst, E., & Reichenberg, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Molecular Autism, 8(1), 13.  https://doi.org/10.1186/s13229-017-0121-4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mouridsen, S. E., Rich, B., & Isager, T. (2016). Diseases of the circulatory system among adult people diagnosed with infantile autism as children: A longitudinal case control study. Research in Developmental Disabilities, 57, 193–200.  https://doi.org/10.1016/j.ridd.2016.07.002.CrossRefPubMedGoogle Scholar
  33. Napoli, C., D’Armiento, F. P., Mancini, F. P., Postiglione, A., Witztum, J. L., Palumbo, G., et al. (1997). Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. The Journal of Clinical Investigation, 100(11), 2680–2690.  https://doi.org/10.1172/jci119813.CrossRefPubMedPubMedCentralGoogle Scholar
  34. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). (2002). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation, 106(25), 3143.  https://doi.org/10.1161/circ.106.25.3143.CrossRefGoogle Scholar
  35. Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15(5), 606–614.  https://doi.org/10.1016/j.cmet.2012.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Patrick, R. P., & Ames, B. N. (2014). Vitamin D hormone regulates serotonin synthesis. Part 1: Relevance for autism. FASEB Journal, 28(6), 2398–2413.  https://doi.org/10.1096/fj.13-246546.CrossRefPubMedGoogle Scholar
  37. Perng, W., Gillman, M. W., Fleisch, A. F., Michalek, R. D., Watkins, S. M., Isganaitis, E., et al. (2014). Metabolomic profiles and childhood obesity. Obesity, 22(12), 2570–2578.  https://doi.org/10.1002/oby.20901.CrossRefPubMedGoogle Scholar
  38. Saher, G., Brugger, B., Lappe-Siefke, C., Mobius, W., Tozawa, R., Wehr, M. C., et al. (2005). High cholesterol level is essential for myelin membrane growth. Nature Neuroscience, 8(4), 468–475.CrossRefGoogle Scholar
  39. Tierney, E., Bukelis, I., Thompson, R. E., Ahmed, K., Aneja, A., Kratz, L., et al. (2006). Abnormalities of cholesterol metabolism in autism spectrum disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B(6), 666–668.  https://doi.org/10.1002/ajmg.b.30368.CrossRefGoogle Scholar
  40. Tseng, P. T., Chen, Y. W., Stubbs, B., Carvalho, A. F., Whiteley, P., Tang, C. H., et al. (2019). Maternal breastfeeding and autism spectrum disorder in children: A systematic review and meta-analysis. Nutritional Neuroscience, 22(5), 354–362.  https://doi.org/10.1080/1028415X.2017.1388598.CrossRefPubMedGoogle Scholar
  41. Waage-Baudet, H., Lauder, J. M., Dehart, D. B., Kluckman, K., Hiller, S., Tint, G. S., et al. (2003). Abnormal serotonergic development in a mouse model for the Smith–Lemli–Opitz syndrome: Implications for autism. International Journal of Developmental Neuroscience, 21(8), 451–459.  https://doi.org/10.1016/j.ijdevneu.2003.09.002.CrossRefPubMedGoogle Scholar
  42. Wan, H., Zhang, C., Li, H., Luan, S., & Liu, C. (2018). Association of maternal diabetes with autism spectrum disorders in offspring: A systemic review and meta-analysis. Medicine, 97(2), e9438.  https://doi.org/10.1097/MD.0000000000009438.CrossRefPubMedPubMedCentralGoogle Scholar
  43. West, P. R., Amaral, D. G., Bais, P., Smith, A. M., Egnash, L. A., Ross, M. E., et al. (2014). Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS ONE, 9(11), e112445.  https://doi.org/10.1371/journal.pone.0112445.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wild, R., Weedin, E. A., & Wilson, D. (2015). Dyslipidemia in pregnancy. Cardiology Clinics, 33(2), 209–215.  https://doi.org/10.1016/j.ccl.2015.01.002.CrossRefPubMedGoogle Scholar
  45. Zheng, H. F., Wang, W. Q., Li, X. M., Rauw, G., & Baker, G. B. (2017). Body fluid levels of neuroactive amino acids in autism spectrum disorders: A review of the literature. Amino Acids, 49(1), 57–65.  https://doi.org/10.1007/s00726-016-2332-y.CrossRefPubMedGoogle Scholar
  46. Zoncu, R., Efeyan, A., & Sabatini, D. M. (2011). mTOR: From growth signal integration to cancer, diabetes and ageing. Nature Reviews Molecular Cell Biology, 12(1), 21–35.  https://doi.org/10.1038/nrm3025.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of International Health, Center for Human NutritionJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  2. 2.Department of Population, Family and Reproductive Health, Center on the Early Life Origins of DiseaseJohns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  3. 3.Department of Pharmacology and Molecular Sciences, Cullman Chemoprotection CenterJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Division of Clinical Pharmacology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of Pediatrics, School of Medicine and Boston Medical CenterBoston UniversityBostonUSA
  6. 6.Division of General Pediatrics & Adolescent Medicine, Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations