Advertisement

Journal of Autism and Developmental Disorders

, Volume 49, Issue 12, pp 5086–5099 | Cite as

Brief Report: Pupillometry, Visual Perception, and ASD Features in a Task-Switching Paradigm

  • Antoinette Sabatino DiCriscioEmail author
  • Yirui Hu
  • Vanessa TroianiEmail author
Brief Report
  • 90 Downloads

Abstract

We assessed the association between dynamic changes in pupil response in the context of visual perception and quantitative measures of the autism phenotype in healthy adults. Using Navon stimuli in a task-switching paradigm, participants were instructed to identify global or local information based on a cue. Multiple pupil response trajectories across conditions were identified. We combined trajectory patterns for global and local conditions and used data-driven methods to identify three distinct pupil trajectory sub-groups. We report higher scores on quantitative measures of autism features in individuals who demonstrated an increased change in pupil diameter across both conditions. Results demonstrate the use of individualized pupil response trajectories in order to quantitatively characterize visual perception associated with the broader autism phenotype (BAP).

Keywords

Pupillometry Eye tracking Visual perception Attention Autism 

Notes

Acknowledgments

The authors are grateful to Kayleigh M. Adamson for their help with recruitment and data collection. This study was funded by the Simons Foundation, SFARI Explorer Award #350225. We would like to extend our sincere gratitude to the individuals who participated in this study.

Author Contributions

ASD and VT designed the research. ASD programmed the task and collected the data. YH and ASD completed data analysis. ASD, YH and VT interpreted the data. ASD drafted the manuscript. ASD, YH and VT critically revised the manuscript. All authors have read and approved the final version of the manuscript. All authors reviewed the manuscript.

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science,205(4412), 1289–1292.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). A new step towards understanding embedded figures test performance in the autism spectrum: The radial frequency search task. Neuropsychologia,48(2), 374–381.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology,51(2), 207–211.  https://doi.org/10.1002/dev.20352.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antezana, L., Mosner, M. G., Troiani, V., & Yerys, B. E. (2016). Social-emotional inhibition of return in children with autism spectrum disorder versus typical development. Journal of Autism and Developmental Disorders,46(4), 1236–1246.  https://doi.org/10.1007/s10803-015-2661-9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language,59(4), 390–412.CrossRefGoogle Scholar
  6. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of Autism and Developmental Disorders,31(1), 5–17.CrossRefGoogle Scholar
  7. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin,91(2), 276–292.  https://doi.org/10.1037/0033-2909.91.2.276.CrossRefPubMedGoogle Scholar
  8. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. Handbook of Psychophysiology,2, 142–162.Google Scholar
  9. Binda, P., & Murray, S. O. (2015). Keeping a large-pupilled eye on high-level visual processing. Trends in Cognitive Sciences,19(1), 1–3.  https://doi.org/10.1016/j.tics.2014.11.002.CrossRefPubMedGoogle Scholar
  10. Binda, P., Pereverzeva, M., & Murray, S. O. (2013). Attention to bright surfaces enhances the pupillary light reflex. Journal of Neuroscience,33(5), 2199–2204.PubMedCrossRefGoogle Scholar
  11. Blaser, E., Eglington, L., Carter, A. S., & Kaldy, Z. (2014). Pupillometry reveals a mechanism for the autism spectrum disorder (asd) advantage in visual tasks. Scientific Reports.  https://doi.org/10.1038/srep04301.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Boev, A. N., Fountas, K. N., Karampelas, I., Boev, C., Machinis, T. G., Feltes, C., et al. (2005). Quantitative pupillometry: Normative data in healthy pediatric volunteers. Journal of Neurosurgery: Pediatrics,103(6), 496–500.Google Scholar
  13. Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience,29(24), 7869–7876.PubMedCrossRefGoogle Scholar
  14. Cassel, T. D., Messinger, D. S., Ibanez, L. V., Haltigan, J. D., Acosta, S. I., & Buchman, A. C. (2007). Early social and emotional communication in the infant siblings of children with autism spectrum disorders: An examination of the broad phenotype. Journal of Autism and Developmental Disorders,37(1), 122–132.PubMedCrossRefGoogle Scholar
  15. Colder, C. R., Campbell, R. T., Ruel, E., Richardson, J. L., & Flay, B. R. (2002). A finite mixture model of growth trajectories of adolescent alcohol use: Predictors and consequences. Journal of Consulting and Clinical Psychology,70(4), 976.PubMedCrossRefGoogle Scholar
  16. D’Souza, D., Booth, R., Connolly, M., Happé, F., & Karmiloff-Smith, A. (2016). Rethinking the concepts of ‘local or global processors’: Evidence from williams syndrome, down syndrome, and autism spectrum disorders. Developmental Science,19(3), 452–468.PubMedCrossRefGoogle Scholar
  17. Dale, G., & Arnell, K. M. (2013). Investigating the stability of and relationships among global/local processing measures. Attention, Perception, & Psychophysics,75(3), 394–406.  https://doi.org/10.3758/s13414-012-0416-7.CrossRefGoogle Scholar
  18. Daniels, L. B., Nichols, D. F., Seifert, M. S., & Hock, H. S. (2012). Changes in pupil diameter entrained by cortically initiated changes in attention. Visual Neuroscience,29(02), 131–142.  https://doi.org/10.1017/S0952523812000077.CrossRefPubMedGoogle Scholar
  19. DiCriscio, A. S., Hu, Y., & Troiani, V. (2018). Task induced pupil response and visual perception in adults. PLoS ONE,13(12), e0209556.CrossRefGoogle Scholar
  20. DiCriscio, A. S., Hu, Y., & Troiani, V. (2019). Visual perception, task-induced pupil response trajectories and ASD features in children. Journal of Autism and Developmental Disorders,49(7), 3016.PubMedCrossRefGoogle Scholar
  21. DiCriscio, A. S., & Troiani, V. (2017a). Brief report: autism-like traits are associated with enhanced ability to disembed visual forms. Journal of Autism and Developmental Disorders,47(5), 1568–1576.  https://doi.org/10.1007/s10803-017-3053-0.CrossRefGoogle Scholar
  22. DiCriscio, A. S., & Troiani, V. (2017b). Pupil adaptation corresponds to quantitative measures of autism traits in children. Scientific Reports,7(1), 6476.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Drew, P., Sayres, R., Watanabe, K., & Shimojo, S. (2001). Pupillary response to chromatic flicker. Experimental Brain Research,136(2), 256–262.PubMedCrossRefGoogle Scholar
  24. Dukette, D., & Stiles, J. (2001). The effects of stimulus density on children’s analysis of hierarchical patterns. Developmental Science,4(2), 233–251.CrossRefGoogle Scholar
  25. Erstenyuk, V., Swanson, M. R., & Siller, M. (2014). Pupillary responses during a joint attention task are associated with nonverbal cognitive abilities and sub-clinical symptoms of autism. Research in Autism Spectrum Disorders,8(6), 644–653.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Grinter, E. J., Maybery, M. T., Van Beek, P. L., Pellicano, E., Badcock, J. C., & Badcock, D. R. (2009). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders,39(9), 1278–1290.PubMedCrossRefGoogle Scholar
  27. Guy, J., Mottron, L., Berthiaume, C., & Bertone, A. (2016). A developmental perspective of global and local visual perception in autism spectrum disorder. Journal of Autism and Developmental Disorders,49(7), 2706.CrossRefGoogle Scholar
  28. Happe, F. (1999). Autism: Cognitive deficit or cognitive style? Trends in Cognitive Science,3(6), 216–222.CrossRefGoogle Scholar
  29. Happé, F. G., & Booth, R. D. (2008). The power of the positive: Revisiting weak coherence in autism spectrum disorders. The Quarterly Journal of Experimental Psychology,61(1), 50–63.PubMedCrossRefGoogle Scholar
  30. Happé, F., Briskman, J., & Frith, U. (2001). Exploring the cognitive phenotype of autism: Weak “central coherence” in parents and siblings of children with autism: I. experimental tests. Journal of Child Psychology and Psychiatry,42(3), 299–307.  https://doi.org/10.1111/1469-7610.00723.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Haro, J., Guasch, M., Vallès, B., & Ferré, P. (2016). Is pupillary response a reliable index of word recognition? Evidence from a delayed lexical decision task. Behavior Research Methods.  https://doi.org/10.3758/s13428-016-0835-9.CrossRefGoogle Scholar
  32. Hayward, D. A., Fenerci, C., & Ristic, J. (2018). An investigation of global-local processing bias in a large sample of typical individuals varying in autism traits. Consciousness and Cognition,65, 271–279.PubMedCrossRefGoogle Scholar
  33. Hobson, R. Peter, & Bishop, M. (2003). The pathogenesis of autism: Insights from congenital blindness. Philosophical Transactions of the Royal Society B: Biological Sciences,358(1430), 335–344.  https://doi.org/10.1098/rstb.2002.1201.CrossRefGoogle Scholar
  34. Hobson, R. P., Lee, A., & Brown, R. (1999). Autism and congenital blindness. Journal of Autism and Developmental Disorders,29(1), 45–56.PubMedCrossRefGoogle Scholar
  35. Hurley, R. S. E., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The Broad autism phenotype questionnaire. Journal of Autism and Developmental Disorders,37(9), 1679–1690.  https://doi.org/10.1007/s10803-006-0299-3.CrossRefGoogle Scholar
  36. Ingersoll, B. (2010). Broader autism phenotype and nonverbal sensitivity: Evidence for an association in the general population. Journal of Autism and Developmental Disorders,40(5), 590–598.PubMedCrossRefGoogle Scholar
  37. Ingersoll, B., Hopwood, C. J., Wainer, A., & Donnellan, M. B. (2011). A comparison of three self-report measures of the broader autism phenotype in a non-clinical sample. Journal of Autism and Developmental Disorders,41(12), 1646–1657.PubMedCrossRefGoogle Scholar
  38. Jackson, I., & Sirois, S. (2009). Infant cognition: Going full factorial with pupil dilation. Developmental Science,12(4), 670–679.  https://doi.org/10.1111/j.1467-7687.2008.00805.x.CrossRefPubMedGoogle Scholar
  39. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience,23(7), 1587–1596.PubMedCrossRefGoogle Scholar
  40. Jobe, L. E., & White, S. W. (2007). Loneliness, social relationships, and a broader autism phenotype in college students. Personality and Individual Differences,42(8), 1479–1489.CrossRefGoogle Scholar
  41. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science,12(6), 1083–1096.  https://doi.org/10.1111/j.1467-7687.2009.00855.x.CrossRefPubMedGoogle Scholar
  42. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science,154(3756), 1583–1585.  https://doi.org/10.1126/science.154.3756.1583.CrossRefPubMedGoogle Scholar
  43. Klingner, J., Kumar, R., & Hanrahan, P. (2008). Measuring the task-evoked pupillary response with a remote eye tracker. Proceedings of the 2008 Symposium on Eye Tracking Research & Applications ACM.  https://doi.org/10.1145/1344471.1344489.CrossRefGoogle Scholar
  44. Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A Window to the preconscious? Perspective on Psychological Science,7, 18–27.CrossRefGoogle Scholar
  45. Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry,45(6), 1115–1122.  https://doi.org/10.1111/j.1469-7610.2004.00304.x.CrossRefGoogle Scholar
  46. Landry, O., & Chouinard, P. A. (2016). Why we should study the broader autism phenotype in typically developing populations. Journal of Cognition and Development,17(4), 584–595.  https://doi.org/10.1080/15248372.2016.1200046.CrossRefGoogle Scholar
  47. Leno, V. C., Tomlinson, S. B., Chang, S.-A. A., Naples, A. J., & McPartland, J. C. (2018). Resting-state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports,8(1), 11982.  https://doi.org/10.1038/s41598-018-30445-2.CrossRefGoogle Scholar
  48. Lent, M. R., Hu, Y., Benotti, P. N., Petrick, A. T., Wood, G. C., Still, C. D., et al. (2018). Demographic, clinical, and behavioral determinants of 7-year weight change trajectories in Roux-en-Y gastric bypass patients. Surgery for Obesity and Related Diseases,14(11), 1680–1685.PubMedCrossRefGoogle Scholar
  49. Losh, M., Childress, D., Lam, K., & Piven, J. (2008). Defining key features of the broad autism phenotype. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics,147(4), 424–433.  https://doi.org/10.1002/ajmg.b.30612.CrossRefGoogle Scholar
  50. Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. Proceedings of the IEEE 7th Conference on Human Factors and Power Plants, 7–7. IEEE.Google Scholar
  51. Martin, I., & McDonald, S. (2003). Weak coherence, no theory of mind, or executive dysfunction? Solving the puzzle of pragmatic language disorders. Brain and Language,85(3), 451–466.PubMedCrossRefGoogle Scholar
  52. Martineau, J., Hernandez, N., Hiebel, L., Roché, L., Metzger, A., & Bonnet-Brilhault, F. (2011). Can pupil size and pupil responses during visual scanning contribute to the diagnosis of autism spectrum disorder in children? Journal of Psychiatric Research,45(8), 1077–1082.  https://doi.org/10.1016/j.jpsychires.2011.01.008.CrossRefPubMedGoogle Scholar
  53. Martino, Di, Adriana, M. D., Shehzad, Z., Kelly, C., Roy, A. K., Gee, D. G., et al. (2009). Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. American Journal of Psychiatry,166(8), 891–899.PubMedCrossRefGoogle Scholar
  54. Mathôt, S., & der Stigchel, S. V. (2015). New light on the mind’s eye the pupillary light response as active vision. Current Directions in Psychological Science,24(5), 374–378.  https://doi.org/10.1177/0963721415593725.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mathôt, S., van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PLoS ONE,8(10), e78168.  https://doi.org/10.1371/journal.pone.0078168.CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H., Wickramariyaratne, T., et al. (2010). Asia has the global advantage: Race and visual attention. Vision Research,50(16), 1540–1549.PubMedCrossRefGoogle Scholar
  57. Moresi, S., Adam, J. J., Rijcken, J., Van Gerven, P. W., Kuipers, H., & Jolles, J. (2008). Pupil dilation in response preparation. International Journal of Psychophysiology,67(2), 124–130.PubMedCrossRefGoogle Scholar
  58. Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders,36(1), 27–43.  https://doi.org/10.1007/s10803-005-0040-7.CrossRefPubMedGoogle Scholar
  59. Naber, M., Alvarez, G. A., & Nakayama, K. (2013). Tracking the allocation of attention using human pupillary oscillations. Frontiers in Psychology, 4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857913/
  60. Nagin, D. S., & Nagin, D. (2005). Group-based modeling of development. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  61. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology,9(3), 353–383.CrossRefGoogle Scholar
  62. Nyström, P., Gredebäck, G., Bölte, S., & Falck-Ytter, T. (2015). Hypersensitive pupillary light reflex in infants at risk for autism. Molecular Autism,6(1), 1.CrossRefGoogle Scholar
  63. O’Riordan, M. A., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology: Human Perception and Performance,27(3), 719.PubMedGoogle Scholar
  64. Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). Estimating cognitive load using remote eye tracking in a driving simulator. Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications ACM.  https://doi.org/10.1145/1743666.1743701.CrossRefGoogle Scholar
  65. Piven, J., & Palmer, P. (1999). Psychiatric disorder and the broad autism phenotype: Evidence from a family study of multiple-incidence autism families. American Journal of Psychiatry. Retrieved from http://ps.psychiatryonline.org/doi/pdf/10.1176/ajp.156.4.557
  66. Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families. American Journal of Psychiatry,154(2), 185–190.CrossRefGoogle Scholar
  67. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry,39(5), 765–775.  https://doi.org/10.1111/1469-7610.00375.CrossRefPubMedGoogle Scholar
  68. Raney, G. E., Campbell, S. J., & Bovee, J. C. (2014). Using eye movements to evaluate the cognitive processes involved in text comprehension. Journal of Visualized Experiments: JoVE, (83). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089416/
  69. RDevelopment, C. (2012). TEAM 2009: R: A language and environment for statistical computing. Vienna, Austria. Internet: http://www.r-Project.Org
  70. Reed, P., Lowe, C., & Everett, R. (2011). Perceptual learning and perceptual search are altered in male university students with higher autism quotient scores. Personality and Individual Differences,51(6), 732–736.CrossRefGoogle Scholar
  71. Russell-Smith, S. N., Maybery, M. T., Bayliss, D. M., & Sng, A. A. H. (2012). Support for a link between the local processing bias and social deficits in autism: An investigation of embedded figures test performance in non-clinical individuals. Journal of Autism and Developmental Disorders,42(11), 2420–2430.  https://doi.org/10.1007/s10803-012-1506-z.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sasson, N. J., Elison, J. T., Turner-Brown, L. M., Dichter, G. S., & Bodfish, J. W. (2011). Brief report: Circumscribed attention in young children with autism. Journal of Autism and Developmental Disorders,41(2), 242–247.  https://doi.org/10.1007/s10803-010-1038-3.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sasson, N. J., Turner-Brown, L. M., Holtzclaw, T. N., Lam, K. S. L., & Bodfish, J. W. (2008). Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Research,1(1), 31–42.  https://doi.org/10.1002/aur.4.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Scherf, K. S., Behrmann, M., Kimchi, R., & Luna, B. (2009). Emergence of global shape processing continues through adolescence. Child Development,80(1), 162–177.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry,34(8), 1351–1364.CrossRefGoogle Scholar
  76. Stewart, L., Overath, T., Warren, J. D., Foxton, J. M., & Griffiths, T. D. (2008). FMRI evidence for a cortical hierarchy of pitch pattern processing. PLoS ONE,3(1), e1470.  https://doi.org/10.1371/journal.pone.0001470.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stewart, M. E., Watson, J., Allcock, A.-J., & Yaqoob, T. (2009). Autistic traits predict performance on the block design. Autism,13(2), 133–142.  https://doi.org/10.1177/1362361308098515.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stiles, J., & Tada, W. L. (1996). Developmental change in children’s analysis of spatial patterns. Developmental Psychology,32(5), 951.CrossRefGoogle Scholar
  79. Turi, M., Burr, D. C., & Binda, P. (2018). Pupillometry reveals perceptual differences that are tightly linked to autistic traits in typical adults. Elife,7, e32399.PubMedPubMedCentralCrossRefGoogle Scholar
  80. van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review,25(6), 2005.CrossRefGoogle Scholar
  81. Varnum, M. E., Shi, Z., Chen, A., Qiu, J., & Han, S. (2014). When “Your” reward is the same as “My” reward: Self-construal priming shifts neural responses to own vs. friends’ rewards. NeuroImage,87, 164–169.PubMedCrossRefGoogle Scholar
  82. Wechsler, D., & Hsiao-pin, C. (2011). WASI-II: Wechsler abbreviated scale of intelligence. Pearson.Google Scholar
  83. Yirmiya, N., Gamliel, I., Pilowsky, T., Feldman, R., Baron-Cohen, S., & Sigman, M. (2006). The development of siblings of children with autism at 4 and 14 months: Social engagement, communication, and cognition. Journal of Child Psychology and Psychiatry,47(5), 511–523.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geisinger Health System, Geisinger Autism & Developmental Medicine Institute (ADMI)LewisburgUSA
  2. 2.Department of Biomedical & Translational Informatics, GeisingerDanvilleUSA

Personalised recommendations