Advertisement

Journal of Autism and Developmental Disorders

, Volume 49, Issue 4, pp 1402–1409 | Cite as

Decreased Cortical Thickness in the Anterior Cingulate Cortex in Adults with Autism

  • Charles LaidiEmail author
  • Jennifer Boisgontier
  • Amicie de Pierrefeu
  • Edouard Duchesnay
  • Sevan Hotier
  • Marc-Antoine d’Albis
  • Richard Delorme
  • Federico Bolognani
  • Christian Czech
  • Céline Bouquet
  • Anouck Amestoy
  • Julie Petit
  • Štefan Holiga
  • Juergen Dukart
  • Alexandru Gaman
  • Elie Toledano
  • Myriam Ly-Le Moal
  • Isabelle Scheid
  • Marion Leboyer
  • Josselin Houenou
Original Paper

Abstract

Autism spectrum disorder (ASD) is a developmental disorder underdiagnosed in adults. To date, no consistent evidence of alterations in brain structure has been reported in adults with ASD and few studies were conducted at that age. We analyzed structural magnetic resonance imaging data from 167 high functioning adults with ASD and 195 controls. We ran our analyses on a discovery (n = 301) and a replication sample (n = 61). The right caudal anterior cingulate cortical thickness was significantly thinner in adults with ASD compared to controls in both the discovery and the replication sample. Our work underlines the relevance of studying the brain anatomy of an adult ASD population.

Keywords

Autism Adults Anterior cingulate cortex MRI 

Notes

Acknowledgments

This work was supported via collaboration with the Institut Roche and by the Investissements d’Avenir programs managed by the ANR under references ANR-11-IDEX-004-02 (Labex BioPsy) and ANR-10-COHO-10-01. The authors would like to thank the participating personnel of the centres, and the subjects who participated to this study. We would also like to thank Ms. Ellen Ji for proofreading of the manuscript. The authors would like to thank and acknowledge Tiziana Zalla (July 1, 1963–April 28, 2018) for her contributions not only to this work but also to the greater scientific community. Tiziana Zalla was a well-respected international researcher and friend who will be remembered for her strong core values and many achievements in the fields of cognitive science and psychiatry.

Author Contributions

CL wrote the main manuscript text and prepared Figures and Tables. All authors (CL, JB, AdP, ED, SH, Md'A, RD, FB, CC, CB, AA, JP, SH, JD, AG, ET, MLM, IS, ML and JH) reviewed the manuscript.

Supplementary material

10803_2018_3807_MOESM1_ESM.docx (998 kb)
Supplementary material 1 (DOCX 997 KB)

References

  1. Cascio, C. J., Foss-Feig, J. H., Heacock, J., Schauder, K. B., Loring, W. A., Rogers, B. P., et al. (2014). Affective neural response to restricted interests in Autism Spectrum Disorders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(2), 162–171.  https://doi.org/10.1111/jcpp.12147.CrossRefGoogle Scholar
  2. Constantino, J. N., Davis, S. A., Todd, R. D., Schindler, M. K., Gross, M. M., Brophy, S. L., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.CrossRefGoogle Scholar
  3. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.  https://doi.org/10.1016/j.neuroimage.2006.01.021.CrossRefGoogle Scholar
  4. Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.  https://doi.org/10.1038/mp.2013.78.CrossRefGoogle Scholar
  5. Dougherty, C. C., Evans, D. W., Katuwal, G. J., & Michael, A. M. (2016). Asymmetry of fusiform structure in autism spectrum disorder: Trajectory and association with symptom severity. Molecular Autism, 7, 28.  https://doi.org/10.1186/s13229-016-0089-5.CrossRefGoogle Scholar
  6. Eaves, L. C., Ho, H. H., & Eaves, D. M. (1994). Subtypes of autism by cluster analysis. Journal of Autism and Developmental Disorders, 24(1), 3–22.CrossRefGoogle Scholar
  7. Ecker, C., Ginestet, C., Feng, Y., Johnston, P., Lombardo, M. V., Lai, M. C., et al. (2013). Brain surface anatomy in adults with autism: The relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry, 70(1), 59–70.  https://doi.org/10.1001/jamapsychiatry.2013.265.CrossRefGoogle Scholar
  8. Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., & Baron-Cohen, S. et al. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: A multicenter magnetic resonance imaging study. Archives of General Psychiatry, 69(2), 195–209.  https://doi.org/10.1001/archgenpsychiatry.2011.1251.CrossRefGoogle Scholar
  9. Eilam-Stock, T., Wu, T., Spagna, A., Egan, L. J., & Fan, J. (2016). Neuroanatomical alterations in high-functioning adults with autism spectrum disorder. Frontiers in Neuroscience, 10, 237.  https://doi.org/10.3389/fnins.2016.00237.CrossRefGoogle Scholar
  10. Ellegood, J., Anagnostou, E., Babineau, B. A., Crawley, J. N., Lin, L., Genestine, M., et al. (2015). Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Molecular Psychiatry, 20(1), 118–125.  https://doi.org/10.1038/mp.2014.98.CrossRefGoogle Scholar
  11. Ernst, J., Böker, H., Hättenschwiler, J., Schüpbach, D., Northoff, G., Seifritz, E., & Grimm, S. (2014). The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Social Cognitive and Affective Neuroscience, 9(6), 857–863.  https://doi.org/10.1093/scan/nst058.CrossRefGoogle Scholar
  12. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055.  https://doi.org/10.1073/pnas.200033797.CrossRefGoogle Scholar
  13. Fountain, C., Winter, A. S., & Bearman, P. S. (2012). Six developmental trajectories characterize children with autism. Pediatrics.  https://doi.org/10.1542/peds.2011-1601.Google Scholar
  14. Gaigg, S. B., Cornell, A. S., & Bird, G. (2016). The psychophysiological mechanisms of alexithymia in autism spectrum disorder. Autism: The International Journal of Research and Practice.  https://doi.org/10.1177/1362361316667062.Google Scholar
  15. Haar, S., Berman, S., Behrmann, M., & Dinstein, I. (2016). Anatomical abnormalities in Autism? Cerebral Cortex, 26(4), 1440–1452.  https://doi.org/10.1093/cercor/bhu242.CrossRefGoogle Scholar
  16. Helles, A., Gillberg, C. I., Gillberg, C., & Billstedt, E. (2015). Asperger syndrome in males over two decades: Stability and predictors of diagnosis. Journal of Child Psychology and Psychiatry, 56(6), 711–718.  https://doi.org/10.1111/jcpp.12334.CrossRefGoogle Scholar
  17. Hogeveen, J., Bird, G., Chau, A., Krueger, F., & Grafman, J. (2016). Acquired alexithymia following damage to the anterior insula. Neuropsychologia, 82, 142–148.  https://doi.org/10.1016/j.neuropsychologia.2016.01.021.CrossRefGoogle Scholar
  18. Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews. Neurology, 10(2), 74–81.  https://doi.org/10.1038/nrneurol.2013.278.CrossRefGoogle Scholar
  19. Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., & Herskovits, E. H. (2010). Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage, 50(2), 589–599.  https://doi.org/10.1016/j.neuroimage.2009.12.047.CrossRefGoogle Scholar
  20. Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F., & Evans, A. C. (2017). Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI Study. Cerebral Cortex (New York,. N.Y.: 1991), 27(3), 1721–1731.  https://doi.org/10.1093/cercor/bhx038.CrossRefGoogle Scholar
  21. Kubilius, J. (2014). A framework for streamlining research workflow in neuroscience and psychology. Frontiers in Neuroinformatics.  https://doi.org/10.3389/fninf.2013.00052.Google Scholar
  22. Laidi, C., Boisgontier, J., Chakravarty, M. M., Hotier, S., d’Albis, M.-A., Mangin, J.-F. O., et al. (2017). Cerebellar anatomical alterations and attention to eyes in autism. Scientific Reports, 7(1), 12008.  https://doi.org/10.1038/s41598-017-11883-w.CrossRefGoogle Scholar
  23. Lenroot, R. K., & Yeung, P. K. (2013). Heterogeneity within autism spectrum disorders: What have we learned from neuroimaging studies? Frontiers in Human Neuroscience, 7, 733.  https://doi.org/10.3389/fnhum.2013.00733.CrossRefGoogle Scholar
  24. Loth, E., Charman, T., Mason, L., Tillmann, J., Jones, E. J. H., Wooldridge, C., et al. (2017). The EU-AIMS Longitudinal European Autism Project (LEAP): Design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 8, 24.  https://doi.org/10.1186/s13229-017-0146-8.CrossRefGoogle Scholar
  25. Mills, K. L., Goddings, A.-L., Herting, M. M., Meuwese, R., Blakemore, S.-J., Crone, E. A., et al. (2016). Structural brain development between childhood and adulthood: Convergence across four longitudinal samples. NeuroImage, 141, 273–281.  https://doi.org/10.1016/j.neuroimage.2016.07.044.CrossRefGoogle Scholar
  26. Murphy, C. M., Wilson, C. E., Robertson, D. M., Ecker, C., Daly, E. M., Hammond, N., et al. (2016). Autism spectrum disorder in adults: Diagnosis, management, and health services development. Neuropsychiatric Disease and Treatment, 12, 1669–1686.  https://doi.org/10.2147/NDT.S65455.CrossRefGoogle Scholar
  27. Oblak, A. L., Gibbs, T. T., & Blatt, G. J. (2010). Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. Journal of Neurochemistry, 114(5), 1414–1423.  https://doi.org/10.1111/j.1471-4159.2010.06858.x.Google Scholar
  28. Phan, T. V., Smeets, D., Talcott, J. B., & Vandermosten, M. (2018). Processing of structural neuroimaging data in young children: Bridging the gap between current practice and state-of-the-art methods. Developmental Cognitive Neuroscience, 33, 206–223.  https://doi.org/10.1016/j.dcn.2017.08.009.CrossRefGoogle Scholar
  29. Raznahan, A., Toro, R., Daly, E., Robertson, D., Murphy, C., Deeley, Q., et al. (2010). Cortical anatomy in autism spectrum disorder: An in vivo MRI study on the effect of age. Cerebral Cortex (New York, N.Y.: 1991) 20(6), 1332–1340.  https://doi.org/10.1093/cercor/bhp198.CrossRefGoogle Scholar
  30. Riddle, K., Cascio, C. J., & Woodward, N. D. (2017). Brain structure in autism: A voxel-based morphometry analysis of the autism brain imaging database exchange (ABIDE). Brain Imaging and Behavior, 11(2), 541–551.  https://doi.org/10.1007/s11682-016-9534-5.CrossRefGoogle Scholar
  31. Rommelse, N., Buitelaar, J. K., & Hartman, C. A. (2017). Structural brain imaging correlates of ASD and ADHD across the lifespan: A hypothesis-generating review on developmental ASD–ADHD subtypes. Journal of Neural Transmission, 124(2), 259–271.  https://doi.org/10.1007/s00702-016-1651-1.CrossRefGoogle Scholar
  32. Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: Heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118(5), 673–684.  https://doi.org/10.1007/s00401-009-0568-2.CrossRefGoogle Scholar
  33. Srivastava, A. K., & Schwartz, C. E. (2014). Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms. Neuroscience and biobehavioral reviews, 46 Pt, 2, 161–174.  https://doi.org/10.1016/j.neubiorev.2014.02.015.CrossRefGoogle Scholar
  34. Valkanova, V., Rhodes, F., & Allan, C. L. (2013). Diagnosis and management of autism in adults. Practitioner, 257(1761), 2–3, 13–16.Google Scholar
  35. Vijayakumar, N., Mills, K. L., Alexander-Bloch, A., Tamnes, C. K., & Whittle, S. (2018). Structural brain development: A review of methodological approaches and best practices. Developmental Cognitive Neuroscience, 33, 129–148.  https://doi.org/10.1016/j.dcn.2017.11.008.CrossRefGoogle Scholar
  36. Wallace, G. L., Dankner, N., Kenworthy, L., Giedd, J. N., & Martin, A. (2010). Age-related temporal and parietal cortical thinning in autism spectrum disorders. Brain, 133(12), 3745–3754.  https://doi.org/10.1093/brain/awq279.CrossRefGoogle Scholar
  37. Wierenga, L. M., Bos, M. G. N., Schreuders, E., Vd Kamp, F., Peper, J. S., Tamnes, C. K., & Crone, E. A. (2018). Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence. Psychoneuroendocrinology, 91, 105–114.  https://doi.org/10.1016/j.psyneuen.2018.02.034.CrossRefGoogle Scholar
  38. Yang, X., Si, T., Gong, Q., Qiu, L., Jia, Z., Zhou, M., et al. (2016). Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies. The Australian and New Zealand Journal of Psychiatry, 50(8), 741–753.  https://doi.org/10.1177/0004867415623858.CrossRefGoogle Scholar
  39. Zhou, Y., Shi, L., Cui, X., Wang, S., & Luo, X. (2016). Functional connectivity of the caudal anterior cingulate cortex is decreased in autism. PLoS ONE.  https://doi.org/10.1371/journal.pone.0151879.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Charles Laidi
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jennifer Boisgontier
    • 1
    • 2
    • 3
  • Amicie de Pierrefeu
    • 5
  • Edouard Duchesnay
    • 5
  • Sevan Hotier
    • 1
    • 2
    • 3
    • 4
  • Marc-Antoine d’Albis
    • 1
    • 2
    • 3
    • 4
  • Richard Delorme
    • 3
    • 6
    • 7
  • Federico Bolognani
    • 8
  • Christian Czech
    • 8
  • Céline Bouquet
    • 8
  • Anouck Amestoy
    • 9
  • Julie Petit
    • 6
  • Štefan Holiga
    • 8
  • Juergen Dukart
    • 8
  • Alexandru Gaman
    • 1
    • 3
    • 4
  • Elie Toledano
    • 10
  • Myriam Ly-Le Moal
    • 10
  • Isabelle Scheid
    • 1
    • 3
    • 4
  • Marion Leboyer
    • 1
    • 3
    • 4
  • Josselin Houenou
    • 1
    • 2
    • 3
    • 4
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle (Créteil, France)CréteilFrance
  2. 2.UNIACT, NeuroSpin, CEA, Université Paris-SaclayParisFrance
  3. 3.Centre expert (Asperger), Fondation FondamentalCréteilFrance
  4. 4.Pôle de Psychiatrie, Assistance Publique–Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DHU PePsy, Hôpitaux Universitaires MondorCréteilFrance
  5. 5.NeuroSpin, CEA, Université Paris-SaclayParisFrance
  6. 6.Service de psychiatrie de l’enfant et de l’adolescent, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Robert DebréParisFrance
  7. 7.Institut Pasteur, Human Genetics and Cognitive Functions UnitParisFrance
  8. 8.Neuroscience, Ophthalmology, and Rare Diseases (NORD)Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd.BaselSwitzerland
  9. 9.Charles Perrens Hospital, Autism Expert CenterBordeauxFrance
  10. 10.Institut RocheBoulogne-Billancourt cedexFrance

Personalised recommendations