Advertisement

Cumulative Antenatal Risk and Kindergarten Readiness in Preterm-Born Preschoolers

  • Andrew M. Heitzer
  • Jamie C. Piercy
  • Brittany N. Peters
  • Allyssa M. Mattes
  • Judith M. Klarr
  • Beau Batton
  • Noa Ofen
  • Sarah RazEmail author
Article
  • 16 Downloads

Abstract

A suboptimal intrauterine environment is thought to increase the probability of deviation from the typical neurodevelopmental trajectory, potentially contributing to the etiology of learning disorders. Yet the cumulative influence of individual antenatal risk factors on emergent learning skills has not been sufficiently examined. We sought to determine whether antenatal complications, in aggregate, are a source of variability in preschoolers’ kindergarten readiness, and whether specific classes of antenatal risk play a prominent role. We recruited 160 preschoolers (85 girls; ages 3–4 years), born ≤336/7 weeks’ gestation, and reviewed their hospitalization records. Kindergarten readiness skills were assessed with standardized intellectual, oral-language, prewriting, and prenumeracy tasks. Cumulative antenatal risk was operationalized as the sum of complications identified out of nine common risks. These were also grouped into four classes in follow-up analyses: complications associated with intra-amniotic infection, placental insufficiency, endocrine dysfunction, and uteroplacental bleeding. Linear mixed model analyses, adjusting for sociodemographic and medical background characteristics (socioeconomic status, sex, gestational age, and sum of perinatal complications) revealed an inverse relationship between the sum of antenatal complications and performance in three domains: intelligence, language, and prenumeracy (p = 0.003, 0.002, 0.005, respectively). Each of the four classes of antenatal risk accounted for little variance, yet together they explained 10.5%, 9.8%, and 8.4% of the variance in the cognitive, literacy, and numeracy readiness domains, respectively. We conclude that an increase in the co-occurrence of antenatal complications is moderately linked to poorer kindergarten readiness skills even after statistical adjustment for perinatal risk.

Keywords

Prenatal Prematurity Preschool Neuropsychology School readiness 

Notes

Acknowledgements

The authors thank Beth Kring and Tammy Swails for their help in data collection. Evaluations and testing materials were funded in part by the Merrill-Palmer Skillman Institute. None of the authors has a known conflict of interest concerning this manuscript.

Funding

This work was supported in part by funding from the Merrill Palmer Skillman Institute, Wayne State University, 71 East Ferry, Detroit, MI 48202.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

10802_2019_577_MOESM1_ESM.docx (183 kb)
ESM 1 (DOCX 183 kb)

References

  1. Aarnoudse-Moens, C. S. H., Oosterlaan, J., Duivenvoorden, H. J., van Goudoever, J. B., & Weisglas-Kuperus, N. (2011). Development of preschool and academic skills in children born very preterm. The Journal of Pediatrics, 158(1), 51–56.  https://doi.org/10.1016/j.jpeds.2010.06.052.CrossRefGoogle Scholar
  2. Alfonso, V. C., & Flanagan, D. P. (2002). Comparative features of comprehensive achievement batteries, Woodcock-Johnson III: Assessment service bulletin N o 5. Itasca: Riverside.Google Scholar
  3. Allotey, J., Zamora, J., Cheong-See, F., Kalidini, M., Arroyo-Manzano, D., Esztalos, E., et al. (2018). Cognitive, motor, behavioural and academic performances of children born preterm: A meta-analysis and systematic review involving 64,061 children. British Journal of Obstetrics and Gynaecology, 125(1), 16–25.  https://doi.org/10.1111/1471-0528.14832.CrossRefGoogle Scholar
  4. Andersen, S. L., Olsen, J., Wu, C. S., & Laurberg, P. (2014). Psychiatric disease in late adolescence and young adulthood. Foetal programming by maternal hypothyroidism? Clinical Endocrinology, 81(1), 126–133.  https://doi.org/10.1111/cen.12415.CrossRefGoogle Scholar
  5. Andersen, S. L., Andersen, S., Vestergaard, P., & Olsen, J. (2018). Maternal thyroid function in early pregnancy and child neurodevelopmental disorders: A Danish nationwide case-cohort study. Thyroid, 28(4), 537–346.  https://doi.org/10.1089/thy.2017.0425.CrossRefGoogle Scholar
  6. Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Sciences, 95(2), 115–128.Google Scholar
  7. Barnhart, L. (2015). HELLP syndrome and the effects on the neonate. Neonatal Network, 34(5), 269–273.  https://doi.org/10.1891/0730-0832.34.5.269.CrossRefGoogle Scholar
  8. Baron, I. S., Erickson, K., Ahronovich, M. D., Coulehan, K., Baker, R., & Litman, F. R. (2009). Visuospatial and verbal fluency relative deficits in “complicated” late-preterm preschool children. Early Human Development, 85(12), 751–754.  https://doi.org/10.1016/j.earlhumdev.2009.10.002.CrossRefGoogle Scholar
  9. Baron, I. S., Erickson, K., Ahronovich, M. D., Baker, R., & Litman, F. R. (2011). Cognitive deficit in preschoolers born late-preterm. Early Human Development, 87(2), 115–119.  https://doi.org/10.1016/j.earlhumdev.2010.11.010.
  10. Batton, D. G., DeWitte, D. B., & Pryce, C. J. (2011). One hundred consecutive infants born at 23 weeks and resuscitated. American Journal of Perinatology, 28(4), 299–304.  https://doi.org/10.1055/s-0030-1268714.
  11. Berhan, Y. (2014). Predictors of perinatal mortality associated with placenta previa and placental abruption: An experience from a low income country. Journal of Pregnancy, 2014, 307043.  https://doi.org/10.1155/2014/307043.CrossRefGoogle Scholar
  12. Braye, K., Ferguson, J., Davis, D., Catling, C., Monk, A., & Foureur, M. (2018). Effectiveness of intrapartum antibiotic prophylaxis for early-onset group B streptococcal infection: An integrative review. Women and Birth, 31(4), 244–253.  https://doi.org/10.1016/j.wombi.2017.10.012.CrossRefGoogle Scholar
  13. Buss, C., Entringer, S., & Wadhwa, P. D. (2012). Fetal programming of brain development: Intrauterine stress and susceptibility to psychopathology. Science Signaling, 5 (245, pt7).  https://doi.org/10.1126/scisignal.2003406.
  14. Caravale, B., Tozzi, C., Albino, G., & Vicari, S. (2005). Cognitive development in low risk preterm infants at 3–4 years of life. Archives of Disease in Childhood Fetal and Neonatal Edition, 90, F474–F479.  https://doi.org/10.1136/adc.2004.070284.CrossRefGoogle Scholar
  15. Carmody, D. P., Bendersky, M., Dunn, S. M., DeMarco, J. K., Hegyi, T., Hiatt, M., & Lewis, M. (2006). Early risk, attention, and brain activation in adolescents born preterm. Child Development, 77(2), 384–394.  https://doi.org/10.1111/j.1467-8624.2006.00877.x.CrossRefGoogle Scholar
  16. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.  https://doi.org/10.1037/0033-2909.112.1.155.CrossRefGoogle Scholar
  17. Davis, E. P., & Sandman, C. A. (2012). Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinology, 37(8), 1224–1233.  https://doi.org/10.1016/j.psyneuen.2011.12.016.CrossRefGoogle Scholar
  18. Davison, M. D., Hammer, C., & Lawrence, F. R. (2011). Associations between preschool language and first grade reading outcomes in bilingual children. Journal of Communication Disorders, 44(4), 444-458.  https://doi.org/10.1016/j.jcomdis.2011.02.003.
  19. Downes, K. L., Sheneassa, E. D., & Grantz, K. L. (2017). Neonatal outcomes associated with placental abruption. American Journal of Epidemiology, 186(12), 1319–1328.  https://doi.org/10.1093/aje/kwx202.CrossRefGoogle Scholar
  20. Eide, M. G., Øyen, N., Skjaerven, R., Irgens, L. M., Bjerkedal, T., & Nilsen, S. T. (2005). Breech delivery and intelligence: A population-based study of 8,738 breech infants. Obstetrics and Gynecology, 105(1), 4–11.  https://doi.org/10.1097/01.AOG.0000149743.80837.d3.
  21. Folio, M. R., & Fewell, R. R. (2000). Peabody developmental motor scales-2nd edition. PRO-ED: Austin, TX.Google Scholar
  22. Foster-Cohen, S. H., Friesen, M. D., Champion, P. R., & Woodward, L. J. (2010). High prevalence/low severity language delay in preschool children born very preterm (2010). Journal of Developmental and Behavioral Pediatrics, 31(8), 658–667.  https://doi.org/10.1097/DBP.0b013e3181e5ab7e.CrossRefGoogle Scholar
  23. Fowden, A. L., Sferruzzi-Perri, A. N., Coan, P. M., Constancia, M., & Burton, G. J. (2009). Placental efficiency and adaptation: Endocrine regulation. The Journal of Physiology, 587(pt.14), 3459–3472.  https://doi.org/10.1113/jphysiol.2009.173013.CrossRefGoogle Scholar
  24. Fraser, A., Nelson, S. M., Macdonald-Wallis, C., & Lawlor, D. A. (2012). Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: The Avon longitudinal study of parents and children. Experimental Diabetes Research, 963735.  https://doi.org/10.1155/2012/963735.
  25. Getahun, D., Oyelese, Y., Salihu, H. M., & Ananth, C. V. (2006). Previoius cesarean delivery and risks of placenta previa and placental abruption. Obstetrics & Gynecology, 107(4), 771–778.  https://doi.org/10.1097/01.AOG.0000206182.63788.80.CrossRefGoogle Scholar
  26. Godfrey, K. M. (2002). The role of the placenta in fetal programming-a review. Placenta, Suppl A, S20–S27.  https://doi.org/10.1053/plac.2002.0773.
  27. Grant, K.-A., Sandman, C. A., Wing, D. A., Dmitrieva, J., & Davis, E. P. (2015). Prenatal programming of postnatal susceptibility to memory impairments: A developmental double jeopardy. Psychological Science, 26(7), 1054–1062.  https://doi.org/10.1177/0956797615580299.CrossRefGoogle Scholar
  28. Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: Two new readiness indicators. Developmental Psychology, 46(5), 1008–1017.  https://doi.org/10.1037/a0020104.CrossRefGoogle Scholar
  29. Haddow, J. E., Craig, W. Y., Neveux, L. M., Palomaki, G. E., Lambert-Messerlian, G., Malone, F. D., & D’Alton, M. E. (2016). Free thyroxine during early pregnancy and risk for gestational diabetes. PLoS One, 11(2), e0149065.  https://doi.org/10.1371/journal.pone.0149065.CrossRefGoogle Scholar
  30. Heuvelman, H., Abel, K., Wicks, S., Gardner, R., Johnstone, E., Lee, B., Magnusson, C., Dalman, C., & Rai, D. (2018). European Journal of Epidemiology, 33, 667–678.  https://doi.org/10.1007/s10654-017-0340-1.CrossRefGoogle Scholar
  31. Hocher, B., Slowinski, T., Bauer, C., & Halle, H. (2001). Nephrology Dialysis Transplantation, 16(6), 1298–1299.  https://doi.org/10.1093/ndt/16.6.1298.CrossRefGoogle Scholar
  32. Hollingshead, A. B. (1975). Four-factor index of social status. New Haven: Yale University.Google Scholar
  33. Horvath, B., Grasselly, M., Bodecs, T., Boncz, I., & Bodis, J. (2012). European Journal of Obstetrics & Gynecology and Reproductive Biology, 163(2), 160–164.  https://doi.org/10.1016/j.ejogrb.2012.05.012.CrossRefGoogle Scholar
  34. Huang, J., Zhu, T., Qu, Y., & Mu, D. (2016). Prenatal, perinatal and neonatal risk factors for intellectual disability: A systemic review and meta-analysis. PLoS One, 11(4), e0153655.  https://doi.org/10.1371/journal.pone.0153655.CrossRefGoogle Scholar
  35. Ismail, M. A., Nagib, N., Ismail, T., & Cibils, L. A. (1999). Comparison of vaginal and cesarean section delivery for fetuses in breech presentation. Journal of Perinatal Medicine, 27(5), 339–351.  https://doi.org/10.1515/JPM.1999.047.CrossRefGoogle Scholar
  36. Kerr-Wilson, C. O., Mackay, D. F., Smith, G. C. S., & Pell, J. P. (2012). Meta-analysis of the association between preterm delivery and intelligence. Journal of Public Health, 34(2), 209–216.  https://doi.org/10.1093/pubmed/fdr024.CrossRefGoogle Scholar
  37. Kramer, M. S., Platt, R. W., Wen, S. W., Joseph, K. S., Allen, A., Abrahamowicz, M., et al. (2001). A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics, 108(2), E35.  https://doi.org/10.1542/peds.108.2.e35.CrossRefGoogle Scholar
  38. Lauterbach, M. D., Raz, S., & Sander, C. J.  (2001). Neonatal hypoxic risk in preterm birth infants: The influence of sex and severity of respiratory distress on cognitive recovery. Neuropsychology, 15(3), 411–420. https://psycnet.apa.org/doi/10.1037/0894-4105.15.3.411.
  39. Liu, Y., Chen, H., Jing, C., & Li, F. (2018). The association between maternal subclinical hypothyroidism and growth, development, and childhood intelligence: A meta-analysis. Journal of Clinical Research in Pediatric Endocrinology, 10(2), 153–161.  https://doi.org/10.4274/jcrpe.4931.CrossRefGoogle Scholar
  40. Maher, G. M., O’Keeffe, G. W., Kennuy, L., Kearney, P. M., Dinan, T. G., & Khashan, A. (2017). Hypertensive disorders of pregnancy and risk of neurodevelopmental disorders – A systematic review and meta-analysis protocol. BMJ Open, 7(10), e018313.  https://doi.org/10.1136/bmjopen-2017-018313.CrossRefGoogle Scholar
  41. Manfra, L., Dinehart, L. H. B., & Sembiante, S. F. (2014). Associations between counting ability in preschool and mathematic performance in first grade among a sample of ethnically diverse, low-income children. Journal of Research in Childhood Education, 28, 101–114.  https://doi.org/10.1080/02568543.2013.850129.CrossRefGoogle Scholar
  42. Manfra, L., Squires, C., Dinehart, L. H. B., Bleiker, C., Hartman, S. C., & Winsler, A. (2017). Preschool writing and premathematics predict grade 3 achievement for low-income, ethnically diverse children. The Journal of Educational Research, 110(5), 528–537.  https://doi.org/10.1080/00220671.2016.1145095.CrossRefGoogle Scholar
  43. Miller, S. L., Huppi, P. S., & Mallard, C. (2016). The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. The Journal of Physiology, 594(4), 807–823.  https://doi.org/10.1113/JP271402.CrossRefGoogle Scholar
  44. Morsing, E., Asard, M., Ley, D., Stjernqvist, K., & Marsal, K. (2011). Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics, 127(4), e874–e872.  https://doi.org/10.1542/peds.2010-1821.CrossRefGoogle Scholar
  45. Myatt, L. (2006). Placental adaptive responses and fetal programming. The Journal of Physiology, 572(pt 1), 25–30.  https://doi.org/10.1113/jphysiol.2006.104968.CrossRefGoogle Scholar
  46. Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., & Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Child Research Quarterly, 36, 550–560.  https://doi.org/10.1016/j.ecresq.2016.02.003.CrossRefGoogle Scholar
  47. Pagani, L. S., Fitzpatrick, C., Archambault, I., & Janosz, M. (2010). School readiness and later achievement: A French Canadian replication and extension. Developmental Psychology, 46(5), 984–994.  https://doi.org/10.1037/a0018881.CrossRefGoogle Scholar
  48. Pinto, S., Malheiro, M. F., Vaz, A., Rodrigues, T., Montenegro, N., & Guimaraes, H. (2018). Neonatal outcome in preterm deliveries before 34-week gestation – The influence of the mechanism of labor onset (2018). Journal of Maternal-Fetal & Neonatal Medicine, 21, 1–7.  https://doi.org/10.1080/14767058.2018.1481038.Google Scholar
  49. Romano, E., Babchishin, L., Pagani, L. S., & Kohen, D. (2010). School readiness and later achievement: Replication and extension using a nationwide Canadian survey. Developmental Psychology, 46(5), 995–1007.  https://doi.org/10.1037/a0018880.CrossRefGoogle Scholar
  50. Shalev, I., Caspi, A., Ambler, A., Belsky, D. W., Chapple, S., Cohen, H. J., et al. (2014). Perinatal complications and aging indicators by midlife. Pediatrics, 134, e1315–e1323.  https://doi.org/10.1542/peds.2014-1669.CrossRefGoogle Scholar
  51. Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428.CrossRefGoogle Scholar
  52. Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel Analysis: An introduction to basic and advanced multilevel modeling (pp. 102–103). London: Sage.Google Scholar
  53. Stepan, H., Leo, H., Purz, S., Hockel, M., & Horn, L.-C. (2005). Placental localization and expression of the cell death factors BNip3 and nix in preeclampsia, intrauterine growth retardation and HELLP syndrome. European Journal of Obstetrics & Gynecology and Reproductive Biology, 122(2), 172–176.  https://doi.org/10.1016/j.ejogrb.2005.01.017.CrossRefGoogle Scholar
  54. Stock, O., Gordon, L., Kapoor, J., Walker, S., Whitehead, C., Kaitu’u-Lino, T. J., et al. (2015). Chorioamnionitis occurring in women with preterm rupture of the fetal membranes is associated with a dynamic increase in mRNAs coding cytokines in the maternal circulation. Reproductive Science, 22(7), 852–859.  https://doi.org/10.1177/1933719114565034.CrossRefGoogle Scholar
  55. Torrioli, M. G., Frisone, M. F., Bonvini, L., Luciano, R., Pasca, M. G., Lepori, R., et al. (2000). Perceptual-motor, visual and cognitive ability in very low birthweight preschool children without neonatal ultrasound abnormalities. Brain & Development, 22(3), 163–168.  https://doi.org/10.1016/S0387-7604(00)00098-X.CrossRefGoogle Scholar
  56. Volpe, J. J. (2001). Intracranial-hemorrhage: Germinal matrix-intraventricular hemorrhage of the premature infant. In J. J. Volpe (Ed.). Neurology of the newborn (4th ed., pp. 428–493). Philadelphia: W. B. Saunders.Google Scholar
  57. Wade, M., Madigan, S., Akbari, E., & Jenkins, J. M. (2015). Cumulative biomedical risk and social cognition in the second year of life: Prediction and moderation by responsive parenting. Frontiers in Psychology, 6(354).  https://doi.org/10.3389/fpsyg.2015.00354.
  58. Wechsler, D. (2002). Wechsler primary and preschool scale of IntelligenceTM (third edition WPPSITM-III). San Antonio: Harcourt Assessment.Google Scholar
  59. Wechsler, D., Coalson, D., & Raiford, S. (2012). Wechsler preschool and primary scale of intelligence (Fourth ed.). United States of America: The Psychological Corporation.Google Scholar
  60. Weiner, E., Miremberg, H., Grinstein, E., Mizrachi, Y., Schreiber, L., Bar, J., & Kovo, M. (2016). The effect of placenta previa on fetal growth and pregnancy outcome, in correlation with placental pathology. Journal of Perinatology, 36(12), 1073–1078.  https://doi.org/10.1038/jp.2016.140.CrossRefGoogle Scholar
  61. Whitehouse, A. J. O., Shelton, W. M. R., Ing, C., & Newnham, J. P. (2014). Prenatal, perinatal, and neonatal risk factors for specific language impairment: A prospective pregnancy cohort study. Journal of Speech, Language, and Hearing Research, 57(4), 1418–1427.  https://doi.org/10.1044/2014_JSLHR-L-13-0186.CrossRefGoogle Scholar
  62. Wiig, E., Secord, W., & Semel, E. (2004). Clinical evaluation of language fundamentals: Preschool-2. San Antonio: Psychological Corporation.Google Scholar
  63. Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson tests of achievement. Itasca: Riverside Publishing.Google Scholar
  64. Yellowhair, T. R., Noor, S., Maxwell, J. R., Anstine, C. V., Oppong, A. Y., Robinson, S., et al. (2018). Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Experimental Neurology, 301(Pt B), 110–119.  https://doi.org/10.1016/j.expneurol.2017.11.002.CrossRefGoogle Scholar
  65. Zeltser, L. M., & Leibel, R. L. (2011). Roles of the placenta in fetal brain development. Proceedings of the National Academy of Science, USA, 108(38), 15667–15668.  https://doi.org/10.1073/pnas.1112239108.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychologyWayne State UniversityDetroitUSA
  2. 2.Department of Newborn MedicineWilliam Beaumont HospitalRoyal OakUSA
  3. 3.Department of PediatricsSouthern Illinois University School of MedicineCarbondaleUSA
  4. 4.The Institute of GerontologyWayne State UniversityDetroitUSA
  5. 5.Developmental Neuropsychology Laboratory, the Merrill-Palmer Skillman InstituteWayne State UniversityDetroitUSA

Personalised recommendations