Advertisement

Journal of Abnormal Child Psychology

, Volume 47, Issue 2, pp 209–219 | Cite as

Positive and Negative Emotionality at Age 3 Predicts Change in Frontal EEG Asymmetry across Early Childhood

  • Brandon L. GoldsteinEmail author
  • Stewart A. Shankman
  • Autumn Kujawa
  • Dana C. Torpey-Newman
  • Margaret W. Dyson
  • Thomas M. Olino
  • Daniel N. Klein
Article

Abstract

Depression is characterized by low positive emotionality (PE) and high negative emotionality (NE), as well as asymmetries in resting electroencephalography (EEG) alpha power. Moreover, frontal asymmetry has itself been linked to PE, NE, and related constructs. However, little is known about associations of temperamental PE and NE with resting EEG asymmetries in young children and whether this association changes as a function of development. In a longitudinal study of 254 three-year old children, we assessed PE and NE at age 3 using a standard laboratory observation procedure. Frontal EEG asymmetries were assessed at age 3 and three years later at age 6. We observed a significant three-way interaction of preschool PE and NE and age at assessment for asymmetry at F3-F4 electrode sites, such that children with both low PE and high NE developed a pattern of increasingly lower relative left-frontal cortical activity over time. In addition, F7-F8 asymmetry was predicted by a PE by time interaction, such that the frontal asymmetry in children with high PE virtually disappeared by age 6. Overall, these findings suggest that early temperament is associated with developmental changes in frontal asymmetry, and that the combination of low PE and high NE predicts the development of the pattern of frontal symmetry that is associated with depression.

Keywords

Positive emotionality Negative emotionality Development Resting eeg Frontal asymmetry Depression Children 

Notes

Compliance with Ethical Standards

Funding

This work was supported by National Institute of Mental Health grant R01 MH069942 (Klein).

Conflict of Interest

The authors report no conflicts of interest.

Ethical Approval

The study was approved by Stony Brook Universities Internal Review Board for Research with Human Subjects.

Informed Consent

Consent was obtained at all assessement points from the parent.

References

  1. Allen, J. J. B., & Reznik, S. J. (2015). Frontal EEG asymmetry as a promising marker of depression vulnerability: summary and methodological considerations. Current Opinion in Psychology, 4, 93–97.  https://doi.org/10.1016/j.copsyc.2014.12.017.CrossRefGoogle Scholar
  2. American Electroencephalographic Society. (1994). American electroencephalographic society guidelines in electroen- cephalography, evoked potentials, and polysomnography. Journal of Clinical Neurophysiology, 11, 1–142.CrossRefGoogle Scholar
  3. Bagiella, E., Sloan, R. P., & Heitjan, D. F. (2000). Mixed-effects models in psychophysiology. Psychophysiology, 37(1), 13–20.  https://doi.org/10.1017/S0048577200980648.CrossRefGoogle Scholar
  4. Brain Development Cooperative Group. (2012). Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cerebral Cortex, 22(1), 1–12.  https://doi.org/10.1093/cercor/bhr018.CrossRefGoogle Scholar
  5. Calkins, S. D., Fox, N. A., & Marshall, T. R. (1996). Behavioral and physiological antecedents of inhibited and uninhibited behavior. Child Development, 67(2), 523–540.  https://doi.org/10.1111/j.1467-8624.1996.tb01749.x.CrossRefGoogle Scholar
  6. Camras, L. A., Sullivan, J., & Michel, G. (1993). Do infants express discrete emotions? Adult judgments of facial, vocal, and body actions. Journal of Nonverbal Behavior, 17(3), 171–186.  https://doi.org/10.1007/BF00986118.CrossRefGoogle Scholar
  7. Coan, J. A., & Allen, J. J. B. (2003). Frontal EEG asymmetry and the behavioral activation and inhibition systems. Psychophysiology, 40(1), 106–114.  https://doi.org/10.1111/1469-8986.00011.CrossRefGoogle Scholar
  8. Coplan, R. J., DeBow, A., Schneider, B. H., & Graham, A. A. (2009). The social behaviours of inhibited children in and out of preschool. The British Journal of Developmental Psychology, 27(Pt 4), 891–905.  https://doi.org/10.1348/026151008X396153.CrossRefGoogle Scholar
  9. Davidson, R. J. (1994). Asymmetric brain function, affective style, and psychopathology: the role of early experience and plasticity. Development and Psychopathology, 6(4), 741–758.CrossRefGoogle Scholar
  10. Diego, M. A., Field, T., Jones, N. A., & Hernandez-Reif, M. (2006). Withdrawn and intrusive maternal interaction style and infant frontal EEG asymmetry shifts in infants of depressed and non-depressed mothers. Infant Behavior and Development, 29(2), 220–229.  https://doi.org/10.1016/j.infbeh.2005.12.002.CrossRefGoogle Scholar
  11. Durbin, C. E., Hayden, E. P., Klein, D. N., & Olino, T. M. (2007). Stability of laboratory-assessed temperamental emotionality traits from ages 3 to 7. Emotion, 7(2), 388-399.  https://doi.org/10.1037/1528-3542.7.2.388.
  12. Dyson, M. W., Olino, T. M., Durbin, C. E., Goldsmith, H. H., Bufferd, S. J., Miller, A. R., & Klein, D. N. (2015). The structural and rank-order stability of temperament in young children based on a laboratory-observational measure. Psychological Assessment, 27(4), 1388–1401.  https://doi.org/10.1037/pas0000104.CrossRefGoogle Scholar
  13. Egger, H. L., & Angold, A. (2004). The Preschool Age Psychiatric Assessment (PAPA): A structured parent interview for diagnosing psychiatric disorders in preschool children. In R. DelCarmen-Wiggins & A. Carter (Eds.), Handbook of infant, toddler, and preschool mental health assessment (1st ed., pp. 223–243). New York: Oxford University Press New York.Google Scholar
  14. Fox, N. A., Rubin, K. H., Calkins, S. D., Marshall, T. R., Coplan, R. J., Porges, S. W., … Stewart, S. (1995). Frontal activation asymmetry and social competence at four years of age. Child Development, 66(6), 1770–1784.  https://doi.org/10.1111/j.1467-8624.1995.tb00964.x.
  15. Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., & Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: psychophysiological and behavioral influences across the first four years of life. Child Development, 72(1), 1–21.  https://doi.org/10.1111/1467-8624.00262.CrossRefGoogle Scholar
  16. Gagne, J. R., Van Hulle, C. A., Aksan, N., Essex, M. J., & Goldsmith, H. H. (2011). Deriving childhood temperament measures from emotion-eliciting behavioral episodes: scale construction and initial validation. Psychological Assessment, 23(2), 337–353.  https://doi.org/10.1037/a0021746.CrossRefGoogle Scholar
  17. Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G., & Casey, B. J. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26(25), 6885–6892.  https://doi.org/10.1523/JNEUROSCI.1062-06.2006.CrossRefGoogle Scholar
  18. Gershuny, B. S., & Sher, K. J. (1998). The relation between personality and anxiety: findings from a 3-year prospective study. Journal of Abnormal Psychology, 107(2), 252–262.  https://doi.org/10.1037/0021-843X.107.2.252.CrossRefGoogle Scholar
  19. Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron, 67(5), 728–734.  https://doi.org/10.1016/j.neuron.2010.08.040.CrossRefGoogle Scholar
  20. Giedd, J. N., Snell, J. W., Lange, N., Rajapakse, J. C., Casey, B. J., Kozuch, P. L., … Rapoport, J. L. (1996). Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cerebral Cortex, 6(4), 551–559.  https://doi.org/10.1093/cercor/6.4.551.
  21. Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S., Knickmeyer, R. C., … Gerig, G. (2007). Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. Journal of Neuroscience, 27(6), 1255–1260.  https://doi.org/10.1523/JNEUROSCI.3339-06.2007.
  22. Goldsmith, H. H., Reilly, J., Lemery, K. S., Longley, S., & Prescott, A. (1995). Laboratory temperament assessment battery: Preschool version. Madison: Department of Psychology, University of Wisconsin-Madison.Google Scholar
  23. Goldstein, B. L., Shankman, S. A., Kujawa, A., Torpey-Newman, D. C., Olino, T. M., & Klein, D. N. (2016). Developmental changes in electroencephalographic frontal asymmetry in young children at risk for depression. Journal of Child Psychology and Psychiatry and Allied Disciplines, 57(9), 1075–1082.  https://doi.org/10.1111/jcpp.12567.CrossRefGoogle Scholar
  24. Goldstein, B. L., Kotov, R., Perlman, G., Watson, D., & Klein, D. N. (2017). Trait and facet-level predictors of first-onset depressive and anxiety disorders in a community sample of adolescent girls. Psychological Medicine.  https://doi.org/10.1017/S0033291717002719.
  25. Hakulinen, C., Elovainio, M., Pulkki-Råback, L., Virtanen, M., Kivimaki, M., Jokela, M., … Jokela, M. (2015). Personality and depressive symptoms: Individual participant meta-analysis of 10 cohort studies. Depression and Anxiety, 32(7), 461–470.  https://doi.org/10.1002/da.22376.
  26. Hane, A. A., Fox, N. A., Henderson, H. A., & Marshall, P. J. (2008). Behavioral reactivity and approach-withdrawal bias in infancy. Developmental Psychology, 44(5), 1491–1496.  https://doi.org/10.1037/a0012855.CrossRefGoogle Scholar
  27. Harmon-Jones, E., & Allen, J. J. B. (1997). Behavioral activation sensitivity and resting frontal EEG asymmetry: covariation of putative indicators related to risk for mood disorders. Journal of Abnormal Psychology, 106(1), 159–163.  https://doi.org/10.1037/0021-843X.106.1.159.CrossRefGoogle Scholar
  28. Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biological Psychology, 84(3), 451–462.  https://doi.org/10.1016/j.biopsycho.2009.08.010.CrossRefGoogle Scholar
  29. Heller, A. S., Cohen, A. O., Dreyfuss, M. F. W., & Casey, B. J. (2016). Changes in cortico-subcortical and subcortico-subcortical connectivity impact cognitive control to emotional cues across development. Social Cognitive and Affective Neuroscience, 11(12), 1910–1918.  https://doi.org/10.1093/scan/nsw097.Google Scholar
  30. Henriques, J. B., & Davidson, R. J. (1990). Regional brain electrical asymmetries discriminate between previously depressed and healthy control subjects. Journal of Abnormal Psychology, 99(1), 22–31.  https://doi.org/10.1037/0021-843X.99.1.22.CrossRefGoogle Scholar
  31. Henriques, J. B., & Davidson, R. J. (1991). Left frontal hypoactivation in depression. Journal of Abnormal Psychology, 100(4), 535–545.  https://doi.org/10.1037/0021-843X.100.4.535.CrossRefGoogle Scholar
  32. Hewig, J., Hagemann, D., Seifert, J., Naumann, E., & Bartussek, D. (2006). The relation of cortical activity and BIS/BAS on the trait level. Biological Psychology, 71(1), 42–53.  https://doi.org/10.1016/j.biopsycho.2005.01.006.CrossRefGoogle Scholar
  33. Insel, T. R., Cuthbert, B. N., Garvey, M. A., Heinssen, R. K., Pine, D. S., Quinn, K. J., … Wang, P. S. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.  https://doi.org/10.1176/appi.ajp.2010.09091379.
  34. Jacobs, G. D., & Snyder, D. (1996). Frontal brain asymmetry predicts affective style in men. Behavioral Neuroscience, 110(1), 3–6.  https://doi.org/10.1037/0735-7044.110.1.3.CrossRefGoogle Scholar
  35. Joiner, T. E., & Lonigan, C. J. (2000). Tripartite model of depression and anxiety in youth psychiatric inpatients: relations with diagnostic status and future symptoms. Journal of Clinical Child Psychology, 29(3), 372–382.  https://doi.org/10.1207/S15374424JCCP2903_8.CrossRefGoogle Scholar
  36. Kagan, J., Reznick, J. S., Clarke, C., Snidman, N., & Garcia-Coll, C. (1984). Behavioral inhibition to the unfamiliar. Child Development, 55(6), 2212.  https://doi.org/10.2307/1129793.CrossRefGoogle Scholar
  37. Kayser, J. (2003). Polygraphic recording data exchange— PolyRex. New York: New York State Psychiatric Institute, Department of Biopsychology.Google Scholar
  38. Klein, D. N., Kotov, R., & Bufferd, S. J. (2011). Personality and depression: explanatory models and review of the evidence. Annual Review of Clinical Psychology, 7(1), 269–295.  https://doi.org/10.1146/annurev-clinpsy-032210-104540.CrossRefGoogle Scholar
  39. Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychological Bulletin, 136(5), 768–821.  https://doi.org/10.1037/a0020327.CrossRefGoogle Scholar
  40. Laptook, R. S., Klein, D. N., Durbin, C. E., Hayden, E. P., Olino, T. M., & Carlson, G. (2008). Differentiation between low positive affectivity and behavioral inhibition in preschool-age children: a comparison of behavioral approach in novel and non-novel contexts. Personality and Individual Differences, 44(3), 758–767.  https://doi.org/10.1016/j.paid.2007.10.010.CrossRefGoogle Scholar
  41. Laptook, R. S., Klein, D. N., Olino, T. M., Dyson, M. W., & Carlson, G. (2010). Low positive affectivity and behavioral inhibition in preschool-age children: a replication and extension of previous findings. Personality and Individual Differences, 48(5), 547–551.  https://doi.org/10.1016/j.paid.2009.12.003.CrossRefGoogle Scholar
  42. Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., & Krakow, K. (2003). EEG-correlated fMRI of human alpha activity. NeuroImage, 19(4), 1463–1476.  https://doi.org/10.1016/S1053-8119(03)00286-6.CrossRefGoogle Scholar
  43. Lewis, M., & Ramsay, D. (2005). Infant emotional and cortisol responses to goal blockage. Child Development, 76(2), 518–530.  https://doi.org/10.1111/j.1467-8624.2005.00860.x.CrossRefGoogle Scholar
  44. Longoni, A. M., & Orsini, L. (1988). Lateral preferences in preschool children: a research note. Journal of Child Psychology and Psychiatry, 29(4), 533–539.  https://doi.org/10.1111/j.1469-7610.1988.tb00744.x.CrossRefGoogle Scholar
  45. Lusby, C. M., Goodman, S. H., Yeung, E. W., Bell, M. A., & Stowe, Z. N. (2016). Infant EEG and temperament negative affectivity: coherence of vulnerabilities to mothers’ perinatal depression. Development and Psychopathology, 28(4pt1), 895–911.  https://doi.org/10.1017/S0954579416000614.CrossRefGoogle Scholar
  46. Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 1199–1208.  https://doi.org/10.1016/S1388-2457(02)00163-3.CrossRefGoogle Scholar
  47. McLaughlin, K. A., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2011). Adverse rearing environments and neural development in children: the development of frontal electroencephalogram asymmetry. Biological Psychiatry, 70(11), 1008–1015.  https://doi.org/10.1016/j.biopsych.2011.08.006.CrossRefGoogle Scholar
  48. Müller, B. C. N., Kühn-Popp, N., Meinhardt, J., Sodian, B., & Paulus, M. (2015). Long-term stability in children’s frontal EEG alpha asymmetry between 14-months and 83-months. International Journal of Developmental Neuroscience, 41, 110–114.  https://doi.org/10.1016/j.ijdevneu.2015.01.002.CrossRefGoogle Scholar
  49. Nusslock, R., Shackman, A. J., Harmon-Jones, E., Alloy, L. B., Coan, J. A., & Abramson, L. Y. (2011). Cognitive vulnerability and frontal brain asymmetry: common predictors of first prospective depressive episode. Journal of Abnormal Psychology, 120(2), 497–503.  https://doi.org/10.1037/a0022940.CrossRefGoogle Scholar
  50. Olino, T. M., Klein, D. N., Dyson, M. W., Rose, S. A., & Durbin, C. E. (2010). Temperamental emotionality in preschool-aged children and depressive disorders in parents: associations in a large community sample. Journal of Abnormal Psychology, 119(3), 468.  https://doi.org/10.1037/a0020112.CrossRefGoogle Scholar
  51. Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437–448.  https://doi.org/10.3102/10769986031004437.CrossRefGoogle Scholar
  52. Schmidtke, J. I., & Heller, W. (2004). Personality, affect and EEG: predicting patterns of regional brain activity related to extraversion and neuroticism. Personality and Individual Differences, 36(3), 717–732.  https://doi.org/10.1016/S0191-8869(03)00129-6.CrossRefGoogle Scholar
  53. Schwartz, S. J., Lilienfeld, S. O., Meca, A., & Sauvigné, K. C. (2016). The role of neuroscience within psychology: a call for inclusiveness over exclusiveness. American Psychologist, 71(1), 52–70.  https://doi.org/10.1037/a0039678.CrossRefGoogle Scholar
  54. Shankman, S. A., Tenke, C. E., Bruder, G. E., Durbin, C. E., Hayden, E. P., & Klein, D. N. (2005). Low positive emotionality in young children: association with EEG asymmetry. Development and Psychopathology, 17(1), 85–98.  https://doi.org/10.10170/S0954579405050054.
  55. Shankman, S. A., Klein, D. N., Tenke, C. E., & Bruder, G. E. (2007). Reward sensitivity in depression: a biobehavioral study. Journal of Abnormal Psychology, 116(1), 95–104.  https://doi.org/10.1037/0021-843X.116.1.95.CrossRefGoogle Scholar
  56. Shankman, S. A., Klein, D. N., Torpey, D. C., Olino, T. M., Dyson, M. W., Kim, J., et al. (2011). Do positive and negative temperament traits interact in predicting risk for depression? A resting EEG study of 329 preschoolers. Development and Psychopathology, 23(2), 551–562.  https://doi.org/10.1017/S0954579411000022.CrossRefGoogle Scholar
  57. Singer, J. D., & Willet, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York: Oxford University Press.CrossRefGoogle Scholar
  58. Somerville, L. H., & Casey, B. J. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20(2), 271–277.  https://doi.org/10.1016/j.conb.2010.01.006.CrossRefGoogle Scholar
  59. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24(38), 8223–8231.CrossRefGoogle Scholar
  60. Sutton, S. K., & Davidson, R. J. (1997). Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychological Science, 8(3), 204–210.  https://doi.org/10.1111/j.1467-9280.1997.tb00413.x.CrossRefGoogle Scholar
  61. Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. Journal of Abnormal Psychology, 115(4), 715–729.  https://doi.org/10.1037/0021-843X.115.4.715.CrossRefGoogle Scholar
  62. Tomarken, A. J., Davidson, R. J., & Henriques, J. B. (1990). Resting frontal brain asymmetry predicts affective responses to films. Journal of Personality and Social Psychology, 59(4), 791–801.  https://doi.org/10.1037/0022-3514.59.4.791.CrossRefGoogle Scholar
  63. Tomarken, A. J., Davidson, R. J., Wheeler, R. E., & Doss, R. C. (1992). Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journal of Personality and Social Psychology, 62(4), 676–687.  https://doi.org/10.1037/0022-3514.62.4.676.CrossRefGoogle Scholar
  64. Van Der Schaaf, M. E., Warmerdam, E., Crone, E. A., & Cools, R. (2011). Distinct linear and non-linear trajectories of reward and punishment reversal learning during development: relevance for dopamine’s role in adolescent decision making. Developmental Cognitive Neuroscience, 1(4), 578–590.  https://doi.org/10.1016/j.dcn.2011.06.007.CrossRefGoogle Scholar
  65. Vasey, M. W., Harbaugh, C. N., Lonigan, C. J., Phillips, B. M., Hankin, B. L., Willem, L., & Bijttebier, P. (2013). Dimensions of temperament and depressive symptoms: replicating a three-way interaction. Journal of Research in Personality, 47(6), 908–921.  https://doi.org/10.1016/j.jrp.2013.09.001.CrossRefGoogle Scholar
  66. Vuga, M., Fox, N. A., Cohn, J. F., Kovacs, M., & George, C. J. (2008). Long-term stability of electroencephalographic asymmetry and power in 3 to 9 year-old children. International Journal of Psychophysiology, 67(1), 70–77  https://doi.org/10.1016/j.ijpsycho.2007.10.007.CrossRefGoogle Scholar
  67. Wacker, J., Chavanon, M. L., & Stemmler, G. (2010). Resting EEG signatures of agentic extraversion: new results and meta-analytic integration. Journal of Research in Personality, 44(2), 167–179.  https://doi.org/10.1016/j.jrp.2009.12.004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Brandon L. Goldstein
    • 1
    Email author
  • Stewart A. Shankman
    • 2
  • Autumn Kujawa
    • 3
  • Dana C. Torpey-Newman
    • 4
  • Margaret W. Dyson
    • 5
  • Thomas M. Olino
    • 6
  • Daniel N. Klein
    • 1
  1. 1.Department of PsychologyStony Brook UniversityStony BrookUSA
  2. 2.University of Illinois at ChicagoChicagoUSA
  3. 3.Pennsylvania State College of MedicineHersheyUSA
  4. 4.Independent PracticeSan DiegoUSA
  5. 5.University of California, San DiegoSan DiegoUSA
  6. 6.Temple UniversityPhiladelphiaUSA

Personalised recommendations