Looming Threats and Animacy: Reduced Responsiveness in Youth with Disrupted Behavior Disorders
Abstract
Theoretical models have implicated amygdala dysfunction in the development of Disruptive Behavior Disorders (DBDs; Conduct Disorder/Oppositional Defiant Disorder). Amygdala dysfunction impacts valence evaluation/response selection and emotion attention in youth with DBDs, particularly in those with elevated callous-unemotional (CU) traits. However, amygdala responsiveness during social cognition and the responsiveness of the acute threat circuitry (amygdala/periaqueductal gray) in youth with DBDs have been less well-examined, particularly with reference to CU traits. 31 youth with DBDs and 27 typically developing youth (IQ, age and gender-matched) completed a threat paradigm during fMRI where animate and inanimate, threatening and neutral stimuli appeared to loom towards or recede from participants. Reduced responsiveness to threat variables, including visual threats and encroaching stimuli, was observed within acute threat circuitry and temporal, lateral frontal and parietal cortices in youth with DBDs. This reduced responsiveness, at least with respect to the looming variable, was modulated by CU traits. Reduced responsiveness to animacy information was also observed within temporal, lateral frontal and parietal cortices, but not within amygdala. Reduced responsiveness to animacy information as a function of CU traits was observed in PCC, though not within the amygdala. Reduced threat responsiveness may contribute to risk taking and impulsivity in youth with DBDs, particularly those with high levels of CU traits. Future work will need to examine the degree to which this reduced response to animacy is independent of amygdala dysfunction in youth with DBDs and what role PCC might play in the dysfunctional social cognition observed in youth with high levels of CU traits.
Keywords
Disruptive behavior disorders Conduct disorder Oppositional defiant disorder Amygdala Threat AnimacyNotes
Acknowledgements
This work was supported by the Intramural Research Program of the National Institute of Mental Health, National Institutes of Health (1-ZIA-MH002860), Dr. Blair principle investigator, with ClinicalTrials.gov Identifier NCT00104039. Further support was provided by the National Institute of Mental Health, National Institutes of Health in grants to R.J.R. Blair (1-K22-MH109558) and S.F. White (1-K01-MH110643).
Compliance with Ethical Standards
Conflict of Interest
No authors have any conflicts of interest to disclose.
Ethical Approval
This study was approved by the National Institutes of Health Combined Neurosciences Institutional Review Board (protocol number 05-M-0105). All research procedures were compliant with relevant U.S. and National Institutes of Health ethics policies and regulations.
Informed Consent
Written informed consent was obtained from the legal guardians of all participants and written assent was obtained from all participants.
Supplementary material
References
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association.CrossRefGoogle Scholar
- Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., & Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anatomy and Embryology (Berlin), 210(5–6), 343–352. doi: 10.1007/s00429-005-0025-5.CrossRefGoogle Scholar
- Anderson, D. J. (2012). Optogenetics, sex, and violence in the brain: Implications for psychiatry. Biological Psychiatry, 71(12), 1081–1089. doi: 10.1016/j.biopsych.2011.11.012.CrossRefPubMedGoogle Scholar
- Baird, S. A. (2002). The links bewteen primary and secondary psychopathy and social adaptation. Colgate University Journal of the Sciences, 34, 61–82.Google Scholar
- Baker, R. H., Clanton, R. L., Rogers, J. C., & De Brito, S. A. (2015). Neuroimaging findings in disruptive behavior disorders. CNS Spectrums, 20(4), 369–381. doi: 10.1017/S1092852914000789.CrossRefPubMedGoogle Scholar
- Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). FMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15(7), 991–1001. doi: 10.1162/089892903770007380.CrossRefPubMedGoogle Scholar
- Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14(2), 212–217. doi: 10.1016/j.conb.2004.03.012.CrossRefPubMedGoogle Scholar
- Bi, Y., Wang, X., & Caramazza, A. (2016). Object domain and modality in the ventral visual pathway. Trends in Cognitive Sciences, 20(4), 282–290. doi: 10.1016/j.tics.2016.02.002.CrossRefPubMedGoogle Scholar
- Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety: Controlling attention to threat-related stimuli. Nature Neuroscience, 7(2), 184–188. doi: 10.1038/nn1173.CrossRefPubMedGoogle Scholar
- Blair, R. J. R. (1995). A cognitive developmental approach to mortality: Investigating the psychopath. Cognition, 57(1), 1–29.CrossRefPubMedGoogle Scholar
- Blair, R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences, 11(9), 387–392. doi: 10.1016/j.tics.2007.07.003.CrossRefPubMedGoogle Scholar
- Blair, R. J. R. (2013). The neurobiology of psychopathic traits in youths. Nature Reviews. Neuroscience, 14(11), 786–799. doi: 10.1038/nrn3577.CrossRefPubMedPubMedCentralGoogle Scholar
- Blair, R. J. R., Leibenluft, E., & Pine, D. S. (2014). Conduct disorder and callous-unemotional traits in youth. The New England Journal of Medicine, 371(23), 2207–2216. doi: 10.1056/NEJMra1315612.CrossRefPubMedGoogle Scholar
- Blanchard, R. J., Blanchard, D. C., Takahashi, T., & Kelley, M. J. (1977). Attack and defensive behaviour in the albino rat. Animal Behavior, 25(3), 622–634.CrossRefGoogle Scholar
- Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z., Petersen, S. E., & Schlaggar, B. L. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. NeuroImage, 17(1), 184–200.CrossRefPubMedGoogle Scholar
- Cao, Z., Zhao, Y., Tan, T., Chen, G., Ning, X., Zhan, L., & Yang, J. (2014). Distinct brain activity in processing negative pictures of animals and objects - the role of human contexts. NeuroImage, 84, 901–910. doi: 10.1016/j.neuroimage.2013.09.064.CrossRefPubMedGoogle Scholar
- Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain the animate-inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 1–34.CrossRefPubMedGoogle Scholar
- Cohen, M. A. (1998). The monetary value of saving a high-risk youth. Journal of Quantitative Criminology, 14(1), 5–33. doi: 10.1023/A:1023092324459.CrossRefGoogle Scholar
- Cohn, M. D., Popma, A., van den Brink, W., Pape, L. E., Kindt, M., van Domburgh, L., & Veltman, D. J. (2013). Fear conditioning, persistence of disruptive behavior and psychopathic traits: An fMRI study. Translational Psychiatry, 3, e319. doi: 10.1038/tp.2013.89.CrossRefPubMedPubMedCentralGoogle Scholar
- Cohn, M. D., van Lith, K., Kindt, M., Pape, L. E., Doreleijers, T. A. H., van den Brink, W., et al. (2016). Fear extinction, persistent disruptive behavior and psychopathic traits: fMRI in late adolescence. Social Cognitive and Affective Neuroscience, 11(7), 1027–1035. doi: 10.1093/scan/nsv067.CrossRefPubMedGoogle Scholar
- Coker-Appiah, D. S., White, S. F., Clanton, R., Yang, J., Martin, A., & Blair, R. J. R. (2013). Looming animate and inanimate threats: The response of the amygdala and periaqueductal gray. Social Neuroscience, 8(6), 621–630. doi: 10.1080/17470919.2013.839480.CrossRefPubMedPubMedCentralGoogle Scholar
- Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.CrossRefPubMedGoogle Scholar
- Cross, E. S., Ramsey, R., Liepelt, R., Prinz, W., & de C. Hamilton, A. F. (2016). The shaping of social perception by stimulus and knowledge cues to human animacy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 371(1686), 20150075. doi: 10.1098/rstb.2015.0075.CrossRefPubMedPubMedCentralGoogle Scholar
- Crowe, S. L., & Blair, R. J. R. (2008). The development of antisocial behavior: What can we learn from functional neuroimaging studies? Development and Psychopathology, 20(4), 1145–1159. doi: 10.1017/s0954579408000540.CrossRefPubMedGoogle Scholar
- Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13–34.CrossRefPubMedGoogle Scholar
- Essau, C. A., Sasagawa, S., & Frick, P. J. (2006). Callous-unemotional traits in a community sample of adolescents. Assessment, 13(4), 454–469. doi: 10.1177/1073191106287354.CrossRefPubMedGoogle Scholar
- Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003). Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning. Annals of the New York Academy of Sciences, 985, 233–250.CrossRefPubMedGoogle Scholar
- Fairchild, G., Van Goozen, S. H., Stollery, S. J., & Goodyer, I. M. (2008). Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biological Psychiatry, 63(3), 279–285. doi: 10.1016/j.biopsych.2007.06.019.CrossRefPubMedGoogle Scholar
- Fairchild, G., Stobbe, Y., van Goozen, S. H. M., Calder, A. J., & Goodyer, I. M. (2010). Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biological Psychiatry, 68(3), 272–279. doi: 10.1016/j.biopsych.2010.02.019.CrossRefPubMedPubMedCentralGoogle Scholar
- Falkner, A. L., & Lin, D. (2014). Recent advances in understanding the role of the hypothalamic circuit during aggression. Frontiers in Systems Neuroscience, 8, 168. doi: 10.3389/fnsys.2014.00168.CrossRefPubMedPubMedCentralGoogle Scholar
- Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.CrossRefPubMedGoogle Scholar
- Fergusson, D. M., Boden, J. M., & Horwood, L. J. (2010). Classification of behavior disorders in adolescence: Scaling methods, predictive validity, and gender differences. Journal of Abnormal Psychology;Journal of Abnormal Psychology, 119(4), 699–712. doi: 10.1037/a0018610.CrossRefGoogle Scholar
- Foulkes, L., McCrory, E. J., Neumann, C. S., & Viding, E. (2014). Inverted social reward: Associations between psychopathic traits and self-report and experimental measures of social reward. PloS One, 9(8), e106000. doi: 10.1371/journal.pone.0106000.CrossRefPubMedPubMedCentralGoogle Scholar
- Frick. (2004). The inventory of callous-unemotional traits. Unpublished rating scale. New Orleans: University of New Orleans.Google Scholar
- Frick, & Dickens. (2006). Current perspectives on conduct disorder. Current Psychiatry Reports, 8(1), 59–72.CrossRefPubMedGoogle Scholar
- Frick, & Hare. (2001). The antisocial process screening device. Toronto: Multi-Health Systems.Google Scholar
- Frick, P. J., Stickle, T. R., Dandreaux, D. M., Farrell, J. M., & Kimonis, E. R. (2005). Callous-unemotional traits in predicting the severity and stability of conduct problems and delinquency. Journal of Abnormal Child Psychology, 33(4), 471–487.CrossRefPubMedGoogle Scholar
- Gregg, T. R., & Siegel, A. (2001). Brain structures and neurotransmitters regulating aggression in cats: Implications for human aggression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(1), 91–140.CrossRefGoogle Scholar
- Harenski, C. L., Harenski, K. A., & Kiehl, K. A. (2014). Neural processing of moral violations among incarcerated adolescents with psychopathic traits. Developmental Cognitive Neuroscience, 10, 181–189. doi: 10.1016/j.dcn.2014.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
- Herpertz, S. C., Huebner, T., Marx, I., Vloet, T. D., Fink, G. R., Stoecker, T., et al. (2008). Emotional processing in male adolescents with childhood-onset conduct disorder. Journal of Child Psychology and Psychiatry, 49(7), 781–791. doi: 10.1111/j.1469-7610.2008.01905.x.CrossRefPubMedGoogle Scholar
- Hwang, S., Nolan, Z. T., White, S. F., Williams, W. C., Sinclair, S., & Blair, R. J. R. (2016). Dual neurocircuitry dysfunctions in disruptive behavior disorders: Emotional responding and response inhibition. Psychological Medicine, 46(7), 1485–1496. doi: 10.1017/S0033291716000118.CrossRefPubMedPubMedCentralGoogle Scholar
- IBM. (2012). IBM SPSS statistics for MacOSX (version 21.0). Armonk, NY: IBM Corp.Google Scholar
- Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J., & Viding, E. (2009). Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. The American Journal of Psychiatry, 166(1), 95–102. doi: 10.1176/appi.ajp.2008.07071050.CrossRefPubMedGoogle Scholar
- Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2003). Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage, 19(1), 16–28.CrossRefPubMedGoogle Scholar
- Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., & Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980–988. doi: 10.1097/00004583-199707000-00021.CrossRefPubMedGoogle Scholar
- Kazdin, A. E. (2000). Treatments for aggressive and antisocial children. Child and Adolescent Psychiatric Clinics of North America, 9(4), 841–858.PubMedGoogle Scholar
- Kimonis, E. R., Frick, P. J., Fazekas, H., & Loney, B. R. (2006). Psychopathy, aggression, and the processing of emotional stimuli in non-referred girls and boys. Behavioral Sciences & the Law, 24(1), 21–37. doi: 10.1002/bsl.668.CrossRefGoogle Scholar
- Kimonis, E. R., Frick, P. J., Skeem, J. L., Marsee, M. A., Cruise, K., Munoz, L. C., & Morris, A. S. (2008). Assessing callous-unemotional traits in adolescent offenders: Validation of the inventory of callous-unemotional traits. International Journal of Law and Psychiatry, 31(3), 241–252. doi: 10.1016/j.ijlp.2008.04.002.CrossRefPubMedGoogle Scholar
- Knutson, B., & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Current Opinion in Neurology, 18(4), 411–417.CrossRefPubMedGoogle Scholar
- Lawing, K., Frick, P. J., & Cruise, K. R. (2010). Differences in offending patterns between adolescent sex offenders high or low in callous-unemotional traits. Psychological Assessment, 22(2), 298–305. doi: 10.1037/a0018707.CrossRefPubMedGoogle Scholar
- LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676. doi: 10.1016/j.neuron.2012.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
- Lozier, L. M., Cardinale, E. M., VanMeter, J. W., & Marsh, A. A. (2014). Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry, 71(6), 627–636. doi: 10.1001/jamapsychiatry.2013.4540.CrossRefPubMedPubMedCentralGoogle Scholar
- Lu, X., Huang, J., Yi, Y., Shen, M., Weng, X., & Gao, Z. (2016). Holding biological motion in working memory: An fMRI study. Frontiers in Human Neuroscience, 10, 251. doi: 10.3389/fnhum.2016.00251.PubMedPubMedCentralGoogle Scholar
- Marsh, A. A., Finger, E. C., Mitchell, D. G., Reid, M. E., Sims, C., Kosson, D. S., et al. (2008). Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. The American Journal of Psychiatry, 165(6), 712–720. doi: 10.1176/appi.ajp.2007.07071145.CrossRefPubMedGoogle Scholar
- Marsh, A. A., Finger, E. C., Fowler, K. A., Jurkowitz, I. T. N., Schechter, J. C., Yu, H. H., & Blair, R. J. R. (2011). Reduced amygdala/orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Research: Neuroimaging, 194(3), 279–286. doi: 10.1016/j.pscychresns.2011.07.008.CrossRefPubMedPubMedCentralGoogle Scholar
- Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58(1), 25–45. doi: 10.1146/annurev.psych.57.102904.190143.CrossRefPubMedGoogle Scholar
- McCoy, A. N., & Platt, M. L. (2005). Expectations and outcomes: Decision-making in the primate brain. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(3), 201–211. doi: 10.1007/s00359-004-0565-9.CrossRefPubMedGoogle Scholar
- Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., et al. (2007). When fear is near: Threat imminence elicits prefrontal-periaqueductal gray shifts in humans. Science, 317(5841), 1079–1083. doi: 10.1126/science.1144298.CrossRefPubMedPubMedCentralGoogle Scholar
- Mobbs, D., Yu, R., Rowe, J. B., Eich, H., FeldmanHall, O., & Dalgleish, T. (2010). Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20582–20586. doi: 10.1073/pnas.1009076107.CrossRefPubMedPubMedCentralGoogle Scholar
- Moffitt, T. E., Caspi, A., Harrington, H., & Milne, B. J. (2002). Males on the life-course-persistent and adolescence-limited antisocial pathways: Follow-up at age 26 years. Development and Psychopathology, 14(1), 179–207.CrossRefPubMedGoogle Scholar
- Mos, J., Kruk, M. R., Van Poel, A. M. D., & Meelis, W. (1982). Aggressive behavior induced by electrical stimulation in the midbrain central gray of male rats. Aggressive Behavior, 8(3), 261–284. doi: 10.1002/1098-2337(1982)8:3<261::AID-AB2480080304>3.0.CO;2-N.CrossRefGoogle Scholar
- Muñoz, L. C., Kerr, M., & Bešić, N. (2008). The peer relationships of youths with psychopathic personality traits: A matter of perspective. Criminal Justice and Behavior, 35(2), 212–227. doi: 10.1177/0093854807310159.CrossRefGoogle Scholar
- Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews. Neuroscience, 8(7), 536–546. doi: 10.1038/nrn2174.CrossRefPubMedGoogle Scholar
- Ochsner, K. N. (2008). The social-emotional processing stream: Five core constructs and their translational potential for schizophrenia and beyond. Biological Psychiatry, 64(1), 48–61. doi: 10.1016/j.biopsych.2008.04.024.CrossRefPubMedPubMedCentralGoogle Scholar
- Osaka, N., Ikeda, T., & Osaka, M. (2012). Effect of intentional bias on agency attribution of animated motion: An event-related fMRI study. PloS One, 7(11), e49053. doi: 10.1371/journal.pone.0049053.CrossRefPubMedPubMedCentralGoogle Scholar
- Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. New York: Oxford University Press.Google Scholar
- Passamonti, L., Fairchild, G., Goodyer, I. M., Hurford, G., Hagan, C. C., Rowe, J. B., & Calder, A. J. (2010). Neural abnormalities in early-onset and adolescence-onset conduct disorder. Archives of General Psychiatry, 67(7), 729–738. doi: 10.1001/archgenpsychiatry.2010.75.CrossRefPubMedPubMedCentralGoogle Scholar
- Pearson, J. M., Heilbronner, S. R., Barack, D. L., Hayden, B. Y., & Platt, M. L. (2011). Posterior cingulate cortex: Adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151. doi: 10.1016/j.tics.2011.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
- Pessoa, L., & Ungerleider, L. G. (2004). Neuroimaging studies of attention and the processing of emotion-laden stimuli. Progress in Brain Research, 144, 171–182. doi: 10.1016/S0079-6123(03)14412-3.CrossRefPubMedGoogle Scholar
- Peters, S. K., Dunlop, K., & Downar, J. (2016). Cortico-striatal-thalamic loop circuits of the salience network: A central pathway in psychiatric disease and treatment. Frontiers in Systems Neuroscience, 10, 104. doi: 10.3389/fnsys.2016.00104.CrossRefPubMedPubMedCentralGoogle Scholar
- Robins, L. (1966). Deviant children grown up. Baltimore, MD: Williams & Wilkins.Google Scholar
- Sebastian, C. L., McCrory, E. J., Cecil, C. A., Lockwood, P. L., De Brito, S. A., Fontaine, N. M., & Viding, E. (2012). Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous-unemotional traits. Archives of General Psychiatry, 69(8), 814–822. doi: 10.1001/archgenpsychiatry.2011.2070.CrossRefPubMedGoogle Scholar
- Sharp, C., van Goozen, S., & Goodyer, I. (2006). Children’s subjective emotional reactivity to affective pictures: Gender differences and their antisocial correlates in an unselected sample of 7-11-year-olds. Journal of Child Psychology and Psychiatry, 47(2), 143–150. doi: 10.1111/j.1469-7610.2005.01464.x.CrossRefPubMedGoogle Scholar
- Shultz, S., & McCarthy, G. (2014). Perceived animacy influences the processing of human-like surface features in the fusiform gyrus. Neuropsychologia, 60, 115–120. doi: 10.1016/j.neuropsychologia.2014.05.019.CrossRefPubMedPubMedCentralGoogle Scholar
- Shultz, S., van den Honert, R. N., Engell, A. D., & McCarthy, G. (2015). Stimulus-induced reversal of information flow through a cortical network for animacy perception. Social Cognitive and Affective Neuroscience, 10(1), 129–135. doi: 10.1093/scan/nsu028.CrossRefPubMedGoogle Scholar
- Stadler, C., Sterzer, P., Schmeck, K., Krebs, A., Kleinschmidt, A., & Poustka, F. (2007). Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: Association with temperament traits. Journal of Psychiatric Research, 41(5), 410–417. doi: 10.1016/j.jpsychires.2006.01.006.CrossRefPubMedGoogle Scholar
- Sterzer, P., Stadler, C., Krebs, A., Kleinschmidt, A., & Poustka, F. (2005). Abnormal neural responses to emotional visual stimuli in adolescents with conduct disorder. Biological Psychiatry, 57(1), 7–15. doi: 10.1016/j.biopsych.2004.10.008.CrossRefPubMedGoogle Scholar
- Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme.Google Scholar
- Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews. Neuroscience, 16(1), 55–61. doi: 10.1038/nrn3857.PubMedGoogle Scholar
- Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A., De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to preattentive masked fear in children with conduct problems: The role of callous-unemotional traits. The American Journal of Psychiatry, 169(10), 1109–1116. doi: 10.1176/appi.ajp.2012.12020191.CrossRefPubMedGoogle Scholar
- Weisberg, J., Milleville, S. C., Kenworthy, L., Wallace, G. L., Gotts, S. J., Beauchamp, M. S., & Martin, A. (2014). Social perception in autism spectrum disorders: Impaired category selectivity for dynamic but not static images in ventral temporal cortex. Cerebral Cortex (New York, N.Y.: 1991), 24(1), 37–48. doi: 10.1093/cercor/bhs276.CrossRefGoogle Scholar
- Wheatley, T., Milleville, S. C., & Martin, A. (2007). Understanding animate agents: Distinct roles for the social network and mirror system. Psychological Science, 18(6), 469–474. doi: 10.1111/j.1467-9280.2007.01923.x.CrossRefPubMedGoogle Scholar
- White, S. F., Marsh, A. A., Fowler, K. A., Schechter, J. C., Adalio, C., Pope, K., et al. (2012a). Reduced amygdala response in youths with disruptive behavior disorders and psychopathic traits: Decreased emotional response versus increased top-down attention to nonemotional features. The American Journal of Psychiatry, 169(7), 750–758. doi: 10.1176/appi.ajp.2012.11081270.CrossRefPubMedGoogle Scholar
- White, S. F., Williams, W. C., Brislin, S. J., Sinclair, S., Blair, K. S., Fowler, K. A., et al. (2012b). Reduced activity within the dorsal endogenous orienting of attention network to fearful expressions in youth with disruptive behavior disorders and psychopathic traits. Development and Psychopathology, 24(3), 1105–1116. doi: 10.1017/s0954579412000569.CrossRefPubMedPubMedCentralGoogle Scholar
- Yang, J., Bellgowan, P. S., & Martin, A. (2012). Threat, domain-specificity and the human amygdala. Neuropsychologia, 50(11), 2566–2572. doi: 10.1016/j.neuropsychologia.2012.07.001.CrossRefPubMedPubMedCentralGoogle Scholar