Advertisement

Tetravalent half-arc-transitive graphs of order 8p

  • Xiuyun WangEmail author
  • Jihui Wang
  • Yan Liu
Article
  • 8 Downloads

Abstract

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. Let p be a prime. It is known that there exist no tetravalent half-arc-transitive graphs of order p or 2p. Feng et al. (J Algebraic Combin 26:431–451, 2007) gave the classification of tetravalent half-arc-transitive graphs of order 4p. In this paper, a classification is given of all tetravalent half-arc-transitive graphs of order 8p.

Keywords

Cayley graph Half-arc-transitive graph Tightly attached half-arc-transitive 

Mathematics Subject Classification

05C25 20B25 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of Shandong (ZR2016AM01) and the Research Fund of University of Jinan (XKY1306).

References

  1. 1.
    Antončič, I., Šparl, P.: Classification of quartic half-arc-transitive weak metacirculants of girth at most 4. Discrete Math. 339, 931–945 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouwer, I.Z.: Vertex- and edge-transitive but not 1-transitive graphs. Canad. Math. Bull. 13, 231–237 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc. 158, 247–256 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheng, H., Cui, L.: Tetravalent half-arc-transitive graphs of order \(p^5\). Appl. Math. Comput. 332, 506–518 (2018)MathSciNetGoogle Scholar
  5. 5.
    Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. B 42, 196–211 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conder, M.D.E., Žitnik, A.: Half-arc-transitive graphs of arbitrary even valency greater than 2. European J. Combin. 54, 177–186 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Conder, M.D.E., Zhou, J.-X., Feng, Y.-Q., Zhang, M.-M.: Edge-transitive bi-Cayley graphs, arXiv:1606.04625
  8. 8.
    Du, S.F., Xu, M.Y.: Vertex-primitive \(\frac{1}{2}\)-arc-transitive graphs of smallest order. Comm. Algebra 27, 163–171 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fawcett, J.B., Giudici, M., Li, C.H., Praeger, C.E., Royle, G., Verret, G.: Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency \(5\). J. Combin. Theory Ser. A 57, 247–266 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feng, Y.-Q., Kwak, J.H., Wang, X.Y., Zhou, J.-X.: Tetravalent half-arc-transitive graphs of order \(2pq\). J. Algebraic Combin. 33, 543–553 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feng, Y.-Q., Kwak, J.H., Xu, M.Y., Zhou, J.-X.: Tetravalent half-arc-transitive graphs of order \(p^4\). European J. Combin. 29, 555–567 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Feng, Y.-Q., Kwak, J.H., Zhou, C.X.: Constructing even radius tightly attached half-arc-transitive graphs of valency four. J. Algebraic Combin. 26, 431–451 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Feng, Y.-Q., Wang, K.S., Zhou, C.X.: Tetravalent half-transitive graphs of order \(4p\). European J. Combin. 28, 726–733 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hujdurović, A., Kutnar, K., Marušič, D.: Half-arc-transitive group actions with a small number of alternets. J. Combin. Theory Ser. A 124, 114–129 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kutnar, K., Marušič, D., Šparl, P.: An infinite family of half-arc-transitive graphs with universal reachability relation. European J. Combin. 31, 1725–1734 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kutnar, K., Marušič, D., Šparl, P.: Classification of half-arc-transitive graphs of order \(4p\). European J. Combin. 34, 1158–1176 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, C.H., Sim, H.S.: On half-transitive metacirculent graphs of prime-power order. J. Combin. Theory Ser. B 81, 45–57 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Marušič, D.: Half-transitive groups actions on finite graphs of valency 4. J. Combin. Theory Ser. B 73, 41–76 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Potočnik, P., Požar, R.: Smallest tetravalent half-arc-transitive graphs with the vertex-stabiliser isomorphic to the dihedral group of order 8. J. Combin. Theory Ser. A 145, 172–183 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Potočnik, P., Šparl, P.: On the radius and the attachment number of tetravalent half-arc-transitive graphs. Discrete Math. 340, 2967–2971 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rivera, A.R., Šparl, P.: The classification of half-arc-transitive generalizations of Bouwer graphs. European J. Combin. 64, 88–112 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tutte, W.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)zbMATHGoogle Scholar
  23. 23.
    Wang, R.J.: Half-transitive graphs of order a product of two distinct primes. Comm. Algebra 22, 915–927 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, X., Feng, Y.-Q.: There exists no tetravalent half-arc-transitive graph of order \(2p^2\). Discrete Math. 310, 1721–1724 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wang, X., Feng, Y.-Q.: Half-arc-transitive graphs of order \(4p\) of valency twice a prime. Ars Math. Contemp. 3, 151–163 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wang, X., Feng, Y.-Q.: Hexavalent half-arc-transitive graphs of order \(4p\). European J. Combin. 30, 1263–1270 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, X., Feng, Y.-Q., Zhou, J.-X., Wang, J.H., Ma, Q.: Tetravalent half-arc-transitive graphs of order a product of three primes. Discrete Math. 339, 1566–1573 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wilson, S., Potočnik, P.: Recipes for Edge-Transitive Tetravalent Graphs, available at http://jan.ucc.nau.edu/swilson/C4FullSite/index.html. Accessed 16 Aug 2016
  29. 29.
    Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebraic Combin. 1, 275–282 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhou, J.-X.: Tetravalent half-arc-transitive \(p\)-graphs. J. Algebraic Combin. 44, 947–971 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematic ScienceUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations