# Containment problem and combinatorics

- 507 Downloads

## Abstract

In this note, we consider two configurations of twelve lines with nineteen triple points (i.e. points where three lines meet). Both of them have the same arrangemental combinatorial features, which means that in both configurations nine of twelve lines have five triple points and one double point, and the remaining three lines have four triple points and three double points. Taking the ideal of the triple points of these configurations we discover that, quite surprisingly, for one of the configurations the containment \(I^{(3)} \subset I^2\) holds, while for the other it does not. Hence, for ideals of points defined by arrangements of lines, the (non)containment of a symbolic power in an ordinary power is not determined alone by arrangemental combinatorial features of the configuration. Moreover, for the configuration with the non-containment \(I^{(3)} \nsubseteq I^2\), we examine its parameter space, which turns out to be a rational curve, and thus establish the existence of a rational non-containment configuration of points. Such rational examples are very rare.

## Keywords

Arrangements of lines Containment problem Configurations Triple points Combinatorial features Symbolic power## Mathematics Subject Classification

52C30 14N20 05B30## 1 Introduction

*m*-th symbolic power of

*I*, we mean \( I^{(m)} = \mathbb {C}[\mathbb {P}^N] \cap \left( \bigcap _{\mathfrak {p} \in \mathop {\mathrm{Ass}}\nolimits (I)} (I^{m})_{\mathfrak {p}} \right) . \) For a radical ideal

*I*, the Nagata-Zariski theorem says that \(I^{(m)}\) is the ideal of all \(f\in I\) which vanish to order at least

*m*along the zero-set of

*I*. The main question concerning the symbolic powers may be stated as follows. For which

*r*and

*m*does the containment

*r*,

*m*and

*j*do we have

*I*be an ideal of points in \(\mathbb {P}^N\). Does then the containment

*r*? Lots of examples suggested that the answer is positive. For an ideal of points in \(\mathbb {P}^2\) in particular, the question was if \(I^{(2r-1)} \subset I^r\) holds. In the paper [10], the first counterexample for the case \(r=2\), \(N=2\) was presented. Since then, quite a few counterexamples appeared, see, e.g. [7, 14, 16, 17, 18, 19] or are announced [2]. The case \(r>2\) or \(N>2\) is still open.

The first real—and rational—counterexamples (i.e. counterexamples where the coordinates of all points are real numbers) come from [7, 9] and [16]. They are modifications of Böröczky configuration of 12 lines. Böröczky configurations were introduced by Böröczky, they appeared in print probably for the first time in [6], and the construction of these configurations is described in the paper of Füredi and Palásti, see [13]. The non-existence of a rational counterexample among Böröczky configurations of 13, 14, 16, 18 and 24 lines is studied in [12]. Recently a new rational counterexample appeared, see [18].

In the paper of Bokowski and Pokora, [5], two non-isomorphic (and non-isomorphic to Böröczky configuration) examples of real configurations with 12 lines and 19 triple points are considered. They are named there \(C_2\) and \(C_7\).

In this paper, we consider the two configurations, \(C_2\) and \(C_7\). These configurations are realizable over the reals, and, what is interesting, they have the same arrangemental combinatorial features as Böröczky configuration of 12 lines. By “the same arrangemental combinatorial features”, we mean that both configurations have the same number of lines, the same number of triple and double points, and that their distribution on lines is the same. So here the 12 lines intersect in 19 triple points, 9 lines have 5 triple points and one double point on them; and 3 lines have 4 triple points and 3 double points. However, the incidence matrices of these configurations are not equivalent, i.e. it is not possible to pass from one matrix to the other by permutations of rows or columns, so the configurations do not have the same *combinatorial data*, cf. [4].

In this paper, we describe the parameter spaces of configurations \(C_2\) and \(C_7\). It turns out, that one of them, \(C_2\), is “rigid”, this means that fixing some four out of 19 triple points (by a projective automorphism) to be (1:0:0), (0:1:0), (0:0:1), (1:1:1), the coordinates of other points can be computed, and these coordinates are non-rational. Moreover, for this configuration the containment \(I_2^{(3)}\subset I_2^2\) holds, where \(I_2\) is the radical ideal of the triple points of the configuration. The second configuration, namely \(C_7\), turns out to have a one-dimensional projective space as a parameter space. Thus, we can take all the triple points of the configuration with rational coefficients. The radical ideal of these points, \(I_7\), gives a new rational example of the non-containment \(I_7^{(3)}\nsubseteq I_7^2\).

## 2 Configuration \(C_2\)

Then, implementing, e.g. in Singular [8], the ideal \(I_2\) of all the triple points, we check that \(I_2^{(3)}\subset I_2^2\). This inclusion may be explained also more theoretically. From [3], we have that if \(\alpha (I^{(m)})\ge r\cdot \text {reg}I\) (where \(\alpha (J)\) denotes the least degree of a nonzero form in a homogeneous ideal *J*), then the containment \(I^{(m)}\subset I^r\) holds. It may be computed (e.g. with Singular) that reg \(I_2=6\) and \(\alpha (I^{(3)})=12\). Thus, \(I_2^{(3)}\subset I_2^2\).

There is an interesting phenomenon that for ideal \(I_{2}\) the inclusion \(I_2^{(3)}\subset I_2^2\) is true, while for other configurations of 12 lines, Böröczky and \(C_7\), with the same arrangemental combinatorial features, the inclusion does not occur, see the next section for \(C_7\) and [16] for Böröczky. Thus, the arrangemental combinatoric features of the configuration do not determine the containment.

## 3 Configuration \(C_7\)

*d*different from 0,

*a*and

*c*. Then

For the convenience of the reader, we enclose the Singular script in Appendix.

## Notes

### Acknowledgements

We would like to thank warmly Piotr Pokora for drawing our attention to the paper [5]. We thank Tomasz Szemberg for discussions and remarks. We also thank the knowledgeable referee for providing insightful comments, which helped us to improve our manuscript. The research of Lampa-Baczyńska was partially supported by National Science Centre, Poland, Grant 2016/23/N/ST1/01363, the research of Tutaj-Gasińska was partially supported by National Science Centre, Poland, Grant 2014/15/B/ST1/02197.

## References

- 1.Bauer, Th., Di Rocco, S., Harbourne, B., Kapustka, M., Knutsen, A.L., Syzdek, W., Szemberg, T.: A primer on Seshadri constants. In: Interactions of Classical and Numerical Algebraic Geometry, Contemp. Math. 496, Amer. Math. 800, Providence, RI, 2009, pp. 33–70Google Scholar
- 2.Bauer, Th., Farnik, Ł., Harbourne, B., Tutaj-Gasińska, H.: A series of non-containment examples arising from nodal cubics
**(in preparation)**Google Scholar - 3.Bocci, C., Harbourne, B.: Comparing powers and symbolic powers of ideals. J. Algebr. Geom.
**19**, 399–417 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 4.Bogomolov, F., Kulikov, V.S.: On the diffeomorphic type of the complement to a line arrangement in a projective plane. Cent. Eur. J. Math.
**10**, 521–529 (2012)MathSciNetCrossRefzbMATHGoogle Scholar - 5.Bokowski, J., Pokora, P.: On the Sylvester-Gallai and the orchard problem for pseudoline arrangements. Period. Math. Hunger. (2017). https://doi.org/10.1007/s10998-017-0224-x zbMATHGoogle Scholar
- 6.Crowe, D.W., McKee, T.A.: Sylvester’s problem on collinear points. Math. Mag.
**41**, 30–34 (1968)MathSciNetCrossRefzbMATHGoogle Scholar - 7.Czapliński, A., Główka-Habura, A., Malara, G., Lampa-Baczyńska, M., Łuszcz-Świdecka, P., Pokora, P., Szpond, J.: A counterexample to the containment \(I^{(3)}\subset I^2\) over the reals. Adv. Geom.
**16**, 77–82 (2016)MathSciNetzbMATHGoogle Scholar - 8.Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2011). Accessed 18 Aug 2018
- 9.Dumnicki, M., Harbourne, B., Nagel, U., Seceleanu, A., Szemberg, T., Tutaj-Gasińska, H.: Resurgences for ideals of special point configurations in \(\mathbb{P}^N\) coming from hyperplane arrangements. J. Algebra
**443**, 383–394 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 10.Dumnicki, M., Szemberg, T., Tutaj-Gasińska, H.: Counterexamples to the \(I^{(3)} \subset I^2\) containment. J. Algebra
**393**, 24–29 (2013)MathSciNetCrossRefzbMATHGoogle Scholar - 11.Ein, L., Lazarsfeld, R., Smith, K.E.: Uniform bounds and symbolic powers on smooth varieties. Invent. Math.
**144**, 241–252 (2001)MathSciNetCrossRefzbMATHGoogle Scholar - 12.Farnik, Ł., Kabat, J., Lampa-Baczyńska, M., Tutaj-Gasińska, H.: On the parameter space of Böröczky configurations. arXiv:1706.09053
- 13.Füredi, Z., Palásti, I.: Arrangements of lines with a large number of triangles. Proc. Amer. Math. Soc.
**92**, 561–566 (1984)MathSciNetCrossRefzbMATHGoogle Scholar - 14.Harbourne, B., Seceleanu, A.: Containment counterexamples for ideals of various configurations of points in \(\mathbb{P}^N\). J. Pure Appl. Algebra
**219**(4), 1062–1072 (2015)MathSciNetCrossRefzbMATHGoogle Scholar - 15.Hochster, M., Huneke, C.: Comparison of symbolic and ordinary powers of ideals. Invent. Math.
**147**, 349–369 (2002)MathSciNetCrossRefzbMATHGoogle Scholar - 16.Lampa-Baczyńska, M., Szpond, J.: From Pappus Theorem to parameter spaces of some extremal line point configurations and applications. Geom. Dedicata
**188**, 103–121 (2017)MathSciNetCrossRefzbMATHGoogle Scholar - 17.Malara, G., Szpond, J.: Fermat-type configurations of lines in \(\mathbb{P}^3\) and the containment problem. J. Pure Appl. Algebra
**222**(8), 2323–2329 (2018)MathSciNetCrossRefzbMATHGoogle Scholar - 18.Malara, G., Szpond, J.: The containment problem and a rational simplicial arrangement. Electron. Res. Announc. Math. Sci.
**24**, 123–128 (2017)zbMATHGoogle Scholar - 19.Szemberg, T., Szpond, J.: On the containment problem. Rend. Circ. Mat. Palermo (2)
**66**, 233–245 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

## Copyright information

**Open Access**This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.