Journal of Algebraic Combinatorics

, Volume 49, Issue 1, pp 69–81 | Cite as

Reflexive polytopes arising from partially ordered sets and perfect graphs

  • Takayuki Hibi
  • Akiyoshi TsuchiyaEmail author


Reflexive polytopes which have the integer decomposition property are of interest. Recently, some large classes of reflexive polytopes with integer decomposition property coming from the order polytopes and the chain polytopes of finite partially ordered sets are known. In the present paper, we will generalize this result. In fact, by virtue of the algebraic technique on Gröbner bases, new classes of reflexive polytopes with the integer decomposition property coming from the order polytopes of finite partially ordered sets and the stable set polytopes of perfect graphs will be introduced. Furthermore, the result will give a polyhedral characterization of perfect graphs. Finally, we will investigate the Ehrhart \(\delta \)-polynomials of these reflexive polytopes.


Reflexive polytope Integer decomposition property Order polytope Stable set polytope Perfect graph Ehrhart \(\delta \)-polynomial Gröbner basis 

Mathematics Subject Classification

13P10 52B20 



The authors would like to thank anonymous referees for reading the manuscript carefully. Akiyoshi Tsuchiya partially supported by Grant-in-Aid for JSPS Fellows 16J01549.


  1. 1.
    Batyrev, V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beck, M., Robins, S.: Computing the Continuous Discretely, Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (2015)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164, 51–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cox, D., Little, J., Schenck, H.: Toric Varieties. American Mathematical Society, Providence (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Haase, C., Melinkov, H.V.: The reflexive dimension of a lattice polytope. Ann. Comb. 10, 211–217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Herzog, H., Hibi, T.: Monomial Ideals, Graduate Text in Mathematics. Springer, London (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws, In: Nagata, M., Matsumura, H. (eds.) Commutative Algebra and Combinatorics, Advanced Studies in Pure Math., vol. 11, pp. 93–109. North-Holland, Amsterdam (1987)Google Scholar
  8. 8.
    Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe (1992)zbMATHGoogle Scholar
  9. 9.
    Hibi, T. (ed.): Gröbner Bases: Statistics and Software Systems. Springer, New York (2013)zbMATHGoogle Scholar
  10. 10.
    Hibi, T., Li, N.: Chain polytopes and algebras with straightening laws. Acta Math. Vietnam. 40, 447–452 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hibi, T., Matsuda, K.: Quadratic Gröbner bases of twinned order polytopes. Eur. J. Comb. 54, 187–192 (2016)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hibi, T., Matsuda, K., Ohsugi, H., Shibata, K.: Centrally symmetric configurations of order polytopes. J. Algebra 443, 469–478 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hibi, T., Matsuda, K., Tsuchiya, A.: Quadratic Gröbner bases arising from partially ordered sets. Math. Scand. 121, 19–25 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hibi, T., Matsuda, K., Tsuchiya, A.: Gorenstein Fano polytopes arising from order polytopes and chain polytopes. arXiv:1507.03221
  15. 15.
    Hibi, T., Tsuchiya, A.: Facets and volume of Gorenstein Fano polytopes. Math. Nachr. 290, 2619–2628 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hibi, T., Tsuchiya, A.: Reflexive polytopes arising from perfect graphs. arXiv:1703.04410
  17. 17.
    Kreuzer, M., Skarke, H.: Complete classification of reflexive polyhedra in four dimensions. Adv. Theor. Math. Phys. 4, 1209–1230 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43, 1022–1035 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ohsugi, H., Hibi, T.: Convex polytopes all of whose reverse lexicographic initial ideals are squarefree. Proc. Am. Math. Soc. 129, 2541–2546 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ohsugi, H., Hibi, T.: Quadratic initial ideals of root systems. Proc. Am. Math. Soc. 130, 1913–1922 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ohsugi, T.: Reverse lexicographic squarefree initial ideals and Gorenstein Fano polytopes. J. Commut. Algebra (to appear).
  22. 22.
    Schrijver, A.: Theory of Linear and Integer Programing. Wiley, Chichester (1986)zbMATHGoogle Scholar
  23. 23.
    Stanley, R.P.: Two poset polytopes. Discret. Comput. Geom. 1, 9–23 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stanley, R.P.: On the Hilbert function of a graded Cohen–Macaulay domain. J. Pure Appl. Algebra 73, 307–314 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. American Mathematical Society, Providence (1996)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pure and Applied Mathematics, Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations