One-step hydrothermal synthesis of GQDs-MoS2 nanocomposite with enhanced supercapacitive performance

  • Sara Moghimian
  • Parvaneh SangpourEmail author
Research Article
Part of the following topical collections:
  1. Capacitors


In recent years, graphene quantum dots with unique physiochemical properties have received considerable research attention in many fields. In this report, as a novel approach toward improving the capacitance value of MoS2 electrode, GQDs-MoS2 nanocomposite thin film was synthesized through one-step hydrothermal process. The microstructure and surface morphology of both MoS2 and GQDs-MoS2 nanocomposite thin films were characterized by X-ray diffraction, Raman spectroscopy, field emission-scanning electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical performances of MoS2 and GQDs-MoS2 nanocomposite thin films was thoroughly compared via Autolab potentiostat–galvanostat with the three-electrode system. The results indicated that GQDs-MoS2 nanocomposite thin film demonstrates enhanced specific capacitance of 380 F g−1 under the current density of 0.6 A g−1. Moreover, the MoS2-GQDs thin film exhibited the highest energy density of 38.47 Wh kg−1 at the Current density of 0.6 A g−1.

Graphic abstract


Graphene quantum dots Nanocomposite Electrochemical performance Supercapacitors 


Supplementary material

10800_2019_1366_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)


  1. 1.
    Jang BZ et al (2011) Graphene surface-enabled lithium ion-exchanging cells: next-generation high-power energy storage devices. Nano Lett 11(9):3785–3791PubMedCrossRefGoogle Scholar
  2. 2.
    Zhao X et al (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Arico AS et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377PubMedCrossRefGoogle Scholar
  4. 4.
    Guan C, Wang J (2016) Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv Sci 3(10):1500405CrossRefGoogle Scholar
  5. 5.
    Liu C et al (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62PubMedCrossRefGoogle Scholar
  6. 6.
    Liu J et al (2018) Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 5(1):1700322CrossRefGoogle Scholar
  7. 7.
    Han S et al (2014) Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 26(6):849–864PubMedCrossRefGoogle Scholar
  8. 8.
    Chang X et al (2018) Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices. Nanotechnology 29(18):185707PubMedCrossRefGoogle Scholar
  9. 9.
    Gao MR et al (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3017PubMedCrossRefGoogle Scholar
  10. 10.
    Wei D et al (2012) Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices. Chem Commun 48(9):1239–1241CrossRefGoogle Scholar
  11. 11.
    Lee H et al (2018) Enhanced electrochemical performance of carbon nanotube with nitrogen and iron using liquid phase plasma process for supercapacitor applications. Int J Mol Sci 19(12):3830PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Xia H, Xu Q, Zhang J (2018) Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nanomicro Lett 10(4):66PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hu X et al (2019) An advanced NiCoFeO/polyaniline composite for high-performance supercapacitor. Chem Asian J 14(7):977–985PubMedCrossRefGoogle Scholar
  14. 14.
    Lim E et al (2014) Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8(9):8968–8978PubMedCrossRefGoogle Scholar
  15. 15.
    Moussa M et al (2016) Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology 27(44):442001PubMedCrossRefGoogle Scholar
  16. 16.
    Zuo W et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4(7):1600539CrossRefGoogle Scholar
  17. 17.
    Mohammed AA, Chen C, Zhu Z (2019) Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J Colloid Interface Sci 538:308–319PubMedCrossRefGoogle Scholar
  18. 18.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828PubMedCrossRefGoogle Scholar
  19. 19.
    Galhena DTL et al (2018) Reduced graphene oxide as a monolithic multifunctional conductive binder for activated carbon supercapacitors. ACS Omega 3(8):9246–9255PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Li Q et al (2018) Recent progress in some amorphous materials for supercapacitors. Small 14(28):e1800426PubMedCrossRefGoogle Scholar
  21. 21.
    Li Q et al (2019) All hierarchical core-shell heterostructures as novel binder-free electrode materials for ultrahigh-energy-density wearable asymmetric supercapacitors. Adv Sci 6(2):1801379CrossRefGoogle Scholar
  22. 22.
    Naderi L, Shahrokhian S (2019) Nickel molybdate nanorods supported on three-dimensional, porous nickel film coated on copper wire as an advanced binder-free electrode for flexible wire-type asymmetric micro-supercapacitors with enhanced electrochemical performances. J Colloid Interface Sci 542:325–338PubMedCrossRefGoogle Scholar
  23. 23.
    Shi Y et al (2018) Stretchable and self-healing integrated all-gel-state supercapacitors enabled by a notch-insensitive supramolecular hydrogel electrolyte. ACS Appl Mater Interfaces 10(42):36028–36036PubMedCrossRefGoogle Scholar
  24. 24.
    Muller GA et al (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15(3):1911–1917PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang X et al (2011) High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 5(3):2013–2019PubMedCrossRefGoogle Scholar
  26. 26.
    Sheberla D et al (2017) Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 16:220–224PubMedCrossRefGoogle Scholar
  27. 27.
    Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou Y et al (2016) In-situ fabrication of graphene oxide hybrid Ni-based metal-organic framework (Ni-MOFs@GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS Appl Mater Interfaces 8(42):28904–28916PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Mater 1(1):33–44Google Scholar
  31. 31.
    Zhu H et al (2015) When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv Mater 27(32):4752–4759PubMedCrossRefGoogle Scholar
  32. 32.
    Abbasi P et al (2017) Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide. ACS Nano 11(1):453–460PubMedCrossRefGoogle Scholar
  33. 33.
    Zhu G et al (2016) Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat Commun 7:13211PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Winchester A et al (2014) Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. ACS Appl Mater Interfaces 6(3):2125–2130PubMedCrossRefGoogle Scholar
  35. 35.
    Acerce M, Akdogan EK, Chhowalla M (2017) Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549(7672):370–373PubMedCrossRefGoogle Scholar
  36. 36.
    Alrasheed A et al (2018) Surface properties of laser-treated molybdenum disulfide nanosheets for optoelectronic applications. ACS Appl Mater Interfaces 10(21):18104–18112PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Asadi M et al (2016) Cathode based on molybdenum disulfide nanoflakes for lithium-oxygen batteries. ACS Nano 10(2):2167–2175PubMedCrossRefGoogle Scholar
  38. 38.
    Bilgin I et al (2015) Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9):8822–8832PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhou F et al (2014) Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 53(43):11552–11556PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Han P, Chung SH, Manthiram A (2018) Thin-layered molybdenum disulfide nanoparticles as an effective polysulfide mediator in lithium-sulfur batteries. ACS Appl Mater Interfaces 10(27):23122–23130PubMedCrossRefGoogle Scholar
  41. 41.
    Ge Y et al (2018) Towards thermally stable high performance lithium-ion batteries: the combination of a phosphonium cation ionic liquid and a 3D porous molybdenum disulfide/graphene electrode. Chem Commun 54(42):5338–5341CrossRefGoogle Scholar
  42. 42.
    Benson J et al (2015) Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 7(25):14113–14122PubMedCrossRefGoogle Scholar
  43. 43.
    Chen IP et al (2016) Large-scale fabrication of a flexible, highly conductive composite paper based on molybdenum disulfide-Pt nanoparticle-single-walled carbon nanotubes for efficient hydrogen production. Chem Commun 53(2):380–383CrossRefGoogle Scholar
  44. 44.
    Bai LZ et al (2018) Synthesis and electrochemical performance of molybdenum disulfide-reduced graphene oxide-polyaniline ternary composites for supercapacitors. Front Chem 6:218PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10(4):313–318PubMedCrossRefGoogle Scholar
  46. 46.
    Clerici F et al (2016) In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 8(16):10459–10465PubMedCrossRefGoogle Scholar
  47. 47.
    Mandal D, Routh P, Nandi AK (2018) Quantum-dot-mediated controlled synthesis of dual oxides of molybdenum from MoS2: quantification of supercapacitor efficacy. Chem Asian J 13(24):3871–3884PubMedCrossRefGoogle Scholar
  48. 48.
    Wang R et al (2017) Elucidating the intercalation pseudocapacitance mechanism of mos2-carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl Mater Interfaces 9(38):32745–32755PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng S et al (2018) MoS2 nanosheet arrays rooted on hollow rgo spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nanomicro Lett 10(4):62PubMedPubMedCentralGoogle Scholar
  50. 50.
    Yang W et al (2017) Carbon-MEMS-based alternating stacked MoS2@rGO-CNT micro-supercapacitor with high capacitance and energy density. Small 13(26):1700639CrossRefGoogle Scholar
  51. 51.
    Liao X et al (2018) MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage. Nano Res 11(4):2083–2092CrossRefGoogle Scholar
  52. 52.
    Ma CB et al (2015) A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale 7(22):10162–10169PubMedCrossRefGoogle Scholar
  53. 53.
    Wang J et al (2016) Synthesis, photoluminescence and bio-targeting applications of blue graphene quantum dots. J Nanosci Nanotechnol 16(4):3457–3467PubMedCrossRefGoogle Scholar
  54. 54.
    Yan Y et al (2018) Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12(4):3523–3532PubMedCrossRefGoogle Scholar
  55. 55.
    Zheng P, Wu N (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J 12(18):2343–2353PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zheng XT et al (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11(14):1620–1636PubMedCrossRefGoogle Scholar
  57. 57.
    Zhu S et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47(24):6858–6860CrossRefGoogle Scholar
  58. 58.
    Islam MS et al (2016) In-situ direct grafting of graphene quantum dots onto carbon fibre by low temperature chemical synthesis for high performance flexible fabric supercapacitor. Mater Today Commun 10:112–119CrossRefGoogle Scholar
  59. 59.
    Zhang S et al (2018) High-performance supercapacitor of graphene quantum dots with uniform sizes. ACS Appl Mater Interfaces 10(15):12983–12991PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang J et al (2018) Enhanced performance of planar perovskite solar cell by graphene quantum dot modification. ACS Sustain Chem Eng 6(7):8631–8640CrossRefGoogle Scholar
  61. 61.
    Park J et al (2016) Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Mater 8:e272CrossRefGoogle Scholar
  62. 62.
    Jia H et al (2018) Heterostructural graphene quantum Dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors. Adv Sci 5(5):1700887CrossRefGoogle Scholar
  63. 63.
    Mondal S, Rana U, Malik S (2015) Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chem Commun 51(62):12365–12368CrossRefGoogle Scholar
  64. 64.
    Huang Y et al (2019) Graphene quantum dots-induced morphological changes in CuCo2S4 nanocomposites for supercapacitor electrodes with enhanced performance. Appl Surf Sci 463:498–503CrossRefGoogle Scholar
  65. 65.
    Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254CrossRefGoogle Scholar
  66. 66.
    Dong YS, Shao J, Chen C, Li H, Wang R, Chi Y, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743CrossRefGoogle Scholar
  67. 67.
    Liu W et al (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5(13):6053–6062PubMedCrossRefGoogle Scholar
  68. 68.
    Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2–RGO for high-performance supercapacitors. ACS Appl Mater Interfaces 10(19):16588–16595PubMedCrossRefGoogle Scholar
  69. 69.
    Yang X et al (2016) A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. J Mater Chem A 4(29):11264–11275CrossRefGoogle Scholar
  70. 70.
    Thangappan R et al (2016) Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Trans 45(6):2637–2646PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research CentreKarajIran

Personalised recommendations