Advertisement

Hydrothermal and peat-derived carbons as electrode materials for high-efficient electrical double-layer capacitors

  • M. Härmas
  • R. Palm
  • T. ThombergEmail author
  • R. Härmas
  • M. Koppel
  • M. Paalo
  • I. Tallo
  • T. Romann
  • A. Jänes
  • E. Lust
Research Article
  • 5 Downloads
Part of the following topical collections:
  1. Capacitors

Abstract

Different micro–mesoporous carbons derived from d-glucose (GDC), granulated white sugar (WSDC) and highly decomposed Estonian peat (PDC) were synthesized using hydrothermal carbonization and direct activation methods. The resulting carbonaceous materials were activated using chemical (KOH and ZnCl2) and physical (CO2) activation methods. The electrochemical characteristics of the electrical double-layer capacitors (EDLCs) based on 1 M Et3MeNBF4 solution in acetonitrile and EtMeImBF4 were measured using two-electrode cells. The EDLCs assembled had specific capacitances from 20 up to 158 ± 18 F g−1 (in EtMeImBF4) and phase angle values from − 65° to − 88° (at low frequencies). The characteristic time constant values vary more than 10 times. Applying constant power discharge method, very high energy and power densities (34 W h kg−1 at 10 kW kg−1) for activated carbon powders-based EDLCs have been measured. Fitting of impedance data showed that enhanced mesoporosity reduces the adsorption and mass-transfer resistance values.

Graphic abstract

Keywords

Activated carbon Hydrothermal carbonization Electrical double-layer capacitor Non-aqueous electrolyte Peat-derived carbon 

Notes

Acknowledgements

This research was supported by the EU through the European Regional Development Fund (Center of Excellence, 2014-2020.4.01.15-0011, TeRa project SLOKT12026T, higher education specialization stipends in smart specialization growth areas 2014-2020.4.02.16-0026) and Institutional Research Grant IUT20–13 and Estonian Research Council Grant PUT1033.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10800_2019_1364_MOESM1_ESM.docx (865 kb)
Supplementary material 1 (DOCX 865 kb)

References

  1. 1.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New YorkCrossRefGoogle Scholar
  2. 2.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  3. 3.
    Burke A, Miller M (2011) The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J Power Sources 196:514–522CrossRefGoogle Scholar
  4. 4.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRefGoogle Scholar
  5. 5.
    Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295CrossRefGoogle Scholar
  6. 6.
    Gogotsi Y, Nikitin A, Ye H et al (2003) Nanoporous carbide-derived carbon with tunable pore size. Nat Mater 2:591–594PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zuo W, Li R, Zhou C et al (2017) Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci 4:1600359CrossRefGoogle Scholar
  8. 8.
    Härmas R, Palm R, Härmas M et al (2018) Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors. Electrochim Acta 283:931–948CrossRefGoogle Scholar
  9. 9.
    Laheäär A, Przygocki P, Abbas Q, Béguin F (2015) Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun 60:21–25CrossRefGoogle Scholar
  10. 10.
    Pohl M, Tallo I, Jänes A et al (2018) Increasing the stability of very high potential electrical double layer capacitors by operando passivation. J Power Sources 402:53–61CrossRefGoogle Scholar
  11. 11.
    Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161CrossRefGoogle Scholar
  12. 12.
    Singhal SC (2014) Solid oxide fuel cells for power generation. Wiley Interdiscip Rev Energy Environ 3:179–194CrossRefGoogle Scholar
  13. 13.
    Tallo I, Thomberg T, Kurig H et al (2013) Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. J Solid State Electrochem 17:19–28CrossRefGoogle Scholar
  14. 14.
    Tee E, Tallo I, Kurig H et al (2015) Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC. Electrochim Acta 161:364–370CrossRefGoogle Scholar
  15. 15.
    Tee E, Tallo I, Thomberg T et al (2016) Supercapacitors based on activated silicon carbide-derived carbon materials and ionic liquid. J Electrochem Soc 163:A1317–A1325CrossRefGoogle Scholar
  16. 16.
    Laheäär A, Jänes A, Lust E (2011) Electrochemical properties of carbide-derived carbon electrodes in non-aqueous electrolytes based on different Li-salts. Electrochim Acta 56:9048–9055CrossRefGoogle Scholar
  17. 17.
    Tallo I, Thomberg T, Kontturi K et al (2011) Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide. Carbon 49:4427–4433CrossRefGoogle Scholar
  18. 18.
    Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300CrossRefGoogle Scholar
  19. 19.
    Jänes A, Permann L, Arulepp M, Lust E (2004) Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions. Electrochem Commun 6:313–318CrossRefGoogle Scholar
  20. 20.
    Thomberg T, Jänes A, Lust E (2009) Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors. J Electroanal Chem 630:55–62CrossRefGoogle Scholar
  21. 21.
    Kockrick E, Schrage C, Borchardt L et al (2010) Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon 48:1707–1717CrossRefGoogle Scholar
  22. 22.
    Sepp S, Härk E, Valk P et al (2014) Impact of the Pt catalyst on the oxygen electroreduction reaction kinetics on various carbon supports. J Solid State Electrochem 18:1223–1229CrossRefGoogle Scholar
  23. 23.
    Lust E, Vaarmets K, Nerut J et al (2014) Influence of specific surface area and microporosity-mesoporosity of pristine and Pt-nanoclusters modified carbide derived carbon electrodes on the oxygen electroreduction. Electrochim Acta 140:294–303CrossRefGoogle Scholar
  24. 24.
    Lust E, Tamm K, Nurk G et al (2015) Development of medium-temperature solid oxide fuel cells and CO2 and H2O co-electrolysis cells in Estonia. ECS Trans 68:3407–3415CrossRefGoogle Scholar
  25. 25.
    Varin R, Czujko T, Wronski Z, Zaranski Z (2009) Nanomaterials for hydrogen storage produced by ball milling. Can Metall Q 48:11–25CrossRefGoogle Scholar
  26. 26.
    Palm R, Kurig H, Aruväli J, Lust E (2018) NaAlH4/microporous carbon composite materials for reversible hydrogen storage. Microporous Mesoporous Mater 264:8–12CrossRefGoogle Scholar
  27. 27.
    Tõnurist K, Thomberg T, Jänes A, Lust E (2013) Specific performance of supercapacitors at lower temperatures based on different separator materials. J Electrochem Soc 160:A449–A457CrossRefGoogle Scholar
  28. 28.
    Tõnurist K, Thomberg T, Jänes A et al (2012) Specific performance of electrical double layer capacitors based on different separator materials in room temperature ionic liquid. Electrochem Commun 22:77–80CrossRefGoogle Scholar
  29. 29.
    Irvine JTS, Neagu D, Verbraeken MC et al (2016) Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1:15014CrossRefGoogle Scholar
  30. 30.
    Thomberg T, Tooming T, Romann T et al (2013) High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and acetonitrile electrolyte. J Electrochem Soc 160:A1834–A1841CrossRefGoogle Scholar
  31. 31.
    Härmas M, Thomberg T, Romann T et al (2017) Carbon for energy storage derived from granulated white sugar by hydrothermal carbonization and subsequent zinc chloride activation. J Electrochem Soc 164:A1866–A1872CrossRefGoogle Scholar
  32. 32.
    Tooming T, Thomberg T, Siinor L et al (2014) A type high capacitance supercapacitor based on mixed room temperature ionic liquids containing specifically adsorbed iodide anions. J Electrochem Soc 161:A222–A227CrossRefGoogle Scholar
  33. 33.
    Eskusson J, Jänes A, Kikas A et al (2011) Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes. J Power Sources 196:4109–4116CrossRefGoogle Scholar
  34. 34.
    Jänes A, Eskusson J, Mattisen L, Lust E (2014) Electrochemical behaviour of hybrid devices based on Na2SO4 and Rb2SO4 neutral aqueous electrolytes and carbon electrodes within wide cell potential region. J Solid State Electrochem 19:769–783CrossRefGoogle Scholar
  35. 35.
    Eskusson J, Rauwel P, Nerut J, Jänes A (2016) A hybrid capacitor based on Fe3O4-graphene nanocomposite/few-layer graphene in different aqueous electrolytes. J Electrochem Soc 163:A2768–A2775CrossRefGoogle Scholar
  36. 36.
    Laheäär A, Jänes A, Lust E (2012) NaClO4 and NaPF6 as potential non-aqueous electrolyte salts for electrical double layer capacitor application. Electrochim Acta 82:309–313CrossRefGoogle Scholar
  37. 37.
    Sigalov S, Levi MD, Salitra G et al (2012) Selective adsorption of multivalent ions into TiC-derived nanoporous carbon. Carbon 50:3957–3960CrossRefGoogle Scholar
  38. 38.
    Laheäär A, Jänes A, Lust E (2014) Cesium carborane as an unconventional non-aqueous electrolyte salt for electrochemical capacitors. Electrochim Acta 125:482–487CrossRefGoogle Scholar
  39. 39.
    Laheäär A, Peikolainen A-L, Koel M et al (2012) Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. J Solid State Electrochem 16:2717–2722CrossRefGoogle Scholar
  40. 40.
    Kurig H, Jänes A, Lust E (2010) Electrochemical characteristics of carbide-derived carbon|1-ethyl-3-methylimidazolium tetrafluoroborate supercapacitor cells. J Electrochem Soc 157:A272–A279CrossRefGoogle Scholar
  41. 41.
    Pohl M, Kurig H, Tallo I et al (2017) Novel sol-gel synthesis route of carbide-derived carbon composites for very high power density supercapacitors. Chem Eng J 320:576–587CrossRefGoogle Scholar
  42. 42.
    Härmas M, Thomberg T, Kurig H et al (2016) Microporous–mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them. J Power Sources 326:624–634CrossRefGoogle Scholar
  43. 43.
    Kurig H, Vestli M, Tõnurist K et al (2012) Influence of room temperature ionic liquid anion chemical composition and electrical charge delocalization on the supercapacitor properties. J Electrochem Soc 159:A944–A951CrossRefGoogle Scholar
  44. 44.
    Daikhin LI, Kornyshev AA, Urbakh M (1996) Double-layer capacitance on a rough metal surface. Phys Rev E 53:6192–6199CrossRefGoogle Scholar
  45. 45.
    Daikhin LI, Kornyshev AA, Urbakh M (1998) Nonlinear Poisson-Boltzmann theory of a double layer at a rough metal/electrolyte interface: a new look at the capacitance data on solid electrodes. J Chem Phys 108:1715–1723CrossRefGoogle Scholar
  46. 46.
    Daikhin LI, Kornyshev AA, Urbakh M (1997) Double layer capacitance on a rough metal surface: surface roughness measured by “Debye ruler”. Electrochim Acta 42:2853–2860CrossRefGoogle Scholar
  47. 47.
    Lust E, Jänes A, Sammelselg V, Miidla P (2000) Influence of charge density and electrolyte concentration on the electrical double layer characteristics at rough cadmium electrodes. Electrochim Acta 46:185–191CrossRefGoogle Scholar
  48. 48.
    Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111:5545–5557PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ivaništšev V, O’Connor S, Fedorov MV (2014) Poly(a)morphic portrait of the electrical double layer in ionic liquids. Electrochem Commun 48:61–64CrossRefGoogle Scholar
  50. 50.
    Kornyshev AA, Luque NB, Schmickler W (2014) Differential capacitance of ionic liquid interface with graphite: the story of two double layers. J Solid State Electrochem 18:1345–1349CrossRefGoogle Scholar
  51. 51.
    Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73CrossRefGoogle Scholar
  52. 52.
    Kormann M, Popovska N (2010) Processing of carbide-derived carbons with enhanced porosity by activation with carbon dioxide. Microporous Mesoporous Mater 130:167–173CrossRefGoogle Scholar
  53. 53.
    Li Z-Y, Akhtar MS, Kwak D-H, Yang O-B (2017) Improvement in the surface properties of activated carbon via steam pretreatment for high performance supercapacitors. Appl Surf Sci 404:88–93CrossRefGoogle Scholar
  54. 54.
    Zhao Q, Wang X, Liu J et al (2015) Surface modification and performance enhancement of carbon derived from chromium carbide for supercapacitor applications. J Electrochem Soc 162:A845–A851CrossRefGoogle Scholar
  55. 55.
    Lobato B, Suárez L, Guardia L, Centeno TA (2017) Capacitance and surface of carbons in supercapacitors. Carbon 122:434–445CrossRefGoogle Scholar
  56. 56.
    Zhang Y-J, Xing Z-J, Duan Z-K et al (2014) Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste. Appl Surf Sci 315:279–286CrossRefGoogle Scholar
  57. 57.
    Presser V, Heon M, Gogotsi Y (2011) Carbide-derived carbons—from porous networks to nanotubes and graphene. Adv Funct Mater 21:810–833CrossRefGoogle Scholar
  58. 58.
    Román S, González JF, González-García CM, Zamora F (2008) Control of pore development during CO2 and steam activation of olive stones. Fuel Process Technol 89:715–720CrossRefGoogle Scholar
  59. 59.
    Osswald S, Portet C, Gogotsi Y et al (2009) Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide. J Solid State Chem Fr 182:1733–1741CrossRefGoogle Scholar
  60. 60.
    Eikerling M, Kornyshev AA, Lust E (2005) Optimized structure of nanoporous carbon-based double-layer capacitors. J Electrochem Soc 152:E24–E33CrossRefGoogle Scholar
  61. 61.
    Tooming T, Thomberg T, Kurig H et al (2015) High power density supercapacitors based on the carbon dioxide activated d-glucose derived carbon electrodes and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Power Sources 280:667–677CrossRefGoogle Scholar
  62. 62.
    Bisquert J (2000) Infuence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185–4192CrossRefGoogle Scholar
  63. 63.
    Titirici M-M (2013) Sustainable carbon materials from hydrothermal processes. Wiley, ChichesterCrossRefGoogle Scholar
  64. 64.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  65. 65.
    Jagiello J, Ania C, Parra JB, Cook C (2015) Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91:330–337CrossRefGoogle Scholar
  66. 66.
    Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRefGoogle Scholar
  67. 67.
    Sevilla M, Fuertes AB (2011) Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ Sci 4:1765–1771CrossRefGoogle Scholar
  68. 68.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  69. 69.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRefGoogle Scholar
  70. 70.
    Dresselhaus MS, Dresselhaus G, Hofmann M (2007) The big picture of Raman scattering in carbon nanotubes. Vib Spectrosc 45:71–81CrossRefGoogle Scholar
  71. 71.
    Kurig H, Russina M, Tallo I et al (2016) The suitability of infinite slit-shaped pore model to describe the pores in highly porous carbon materials. Carbon 100:617–624CrossRefGoogle Scholar
  72. 72.
    Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1290PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Thomberg T, Kurig H, Jänes A, Lust E (2011) Mesoporous carbide-derived carbons prepared from different chromium carbides. Microporous Mesoporous Mater 141:88–93CrossRefGoogle Scholar
  75. 75.
    Li Q-Y, Wang H-Q, Dai Q-F et al (2008) Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ion 179:269–273CrossRefGoogle Scholar
  76. 76.
    Chmiola J, Yushin G, Dash R, Gogotsi Y (2006) Effect of pore size and surface area of carbide derived carbons on specific capacitance. J Power Sources 158:765–772CrossRefGoogle Scholar
  77. 77.
    Salitra G, Soffer A, Eliad L et al (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 147:2486–2493CrossRefGoogle Scholar
  78. 78.
    Wei L, Sevilla M, Fuertes AB et al (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361CrossRefGoogle Scholar
  79. 79.
    Jagiello J (1994) Stable numerical solution of the adsorption integral equation using splines. Langmuir 10:2778–2785CrossRefGoogle Scholar
  80. 80.
    Jänes A, Kurig H, Romann T, Lust E (2010) Novel doubly charged cation based electrolytes for non-aqueous supercapacitors. Electrochem Commun 12:535–539CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of TartuTartuEstonia

Personalised recommendations