Synthesis of MOF-74-derived carbon/ZnCo2O4 nanoparticles@CNT-nest hybrid material and its application in lithium ion batteries

  • Yingying Wang
  • Xinxin Zhu
  • Dan LiuEmail author
  • Haolin TangEmail author
  • Guangrong Luo
  • Keke Tu
  • ZhiZhong Xie
  • Jiaheng Lei
  • Junsheng Li
  • Xi Li
  • Deyu QuEmail author
Research Article
Part of the following topical collections:
  1. Batteries


Carbon/ZnCo2O4 nanoparticles’ hybrid highly dispersed within a carbon nanotube nest were synthesized by the carbonization of in situ formed MOF-74-ZnCo/CNT hybrid materials. Results demonstrated that the synthesized mixed transition metal oxides/carbon/CNT composite provided a stable energy density of 800 mAh g−1 at 100 mA g−1. It could also provide a reversible capacity of 430 mAh g−1 under a high current of 2000 mA g−1 even after 1000 cycles. The outstanding performances of C/ZnCo2O4@CNT can be accredited to the synergistic effects from the porous nanostructured bi-metal oxides, the carbon and the CNT nest. These properties can improve the conductance of the material, alleviate the stress on ZnCo2O4 nanoparticles through accommodating the volume variation during lithium exchange processes, and offer fast diffusion roads for ions and more active sites for lithium storage.

Graphic Abstract


MOF Carbon/ZnCo2O4 hybrid Carbon nanotube LIBs anode 



The authors are grateful for support from the National Natural Science Foundation of China (Nos. 11474226, 21401145, and 51676143) and the Fundamental Research Funds for the Central Universities (WUT: 2017-IB-003, 2018-IB-022, and 2018-IB-028).

Supplementary material

10800_2019_1349_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1263 kb)


  1. 1.
    Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X (2016) Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv Energy Mater 6:1502175CrossRefGoogle Scholar
  2. 2.
    Wang X, Xue H, Na Z, Yin D, Li Q, Wang C, Wang L, Huang G (2018) Metal organic frameworks route to prepare two-dimensional porous zinc-cobalt oxide plates as anode materials for lithium-ion batteries. J Power Sources 396:659–666CrossRefGoogle Scholar
  3. 3.
    Du M, He D, Lou Y, Chen J (2017) Porous nanostructured ZnCo2O4 derived from MOF-74: high-performance anode materials for lithium ion batteries. J Energy Chem 26:673–680CrossRefGoogle Scholar
  4. 4.
    Zhang L, Zheng J, Dou P, Wang W, Cheng J, Xu X (2017) Bubble-induced lychee-shaped hollow ZnCo2O4@polypyrrole/sodium alginate ternary microsphere as novel anode materials for lithium-ion batteries. J Mater Sci 28:10365–10373Google Scholar
  5. 5.
    Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS (2014) Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Adv 4:17230CrossRefGoogle Scholar
  6. 6.
    Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5:981–988CrossRefGoogle Scholar
  7. 7.
    Guo L, Ru Q, Song X, Hu S, Mo Y (2015) Pineapple-shaped ZnCo2O4 microspheres as anode materials for lithium ion batteries with prominent rate performance. J Mater Chem A 3:8683–8692CrossRefGoogle Scholar
  8. 8.
    Zhong XB, Wang HY, Yang ZZ, Jin B, Jiang QC (2015) Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. J Power Sources 296:298–304CrossRefGoogle Scholar
  9. 9.
    Li H, Wang S, Feng M, Yang J, Zhang B (2019) MOF-derived ZnCo2O4/C wrapped on carbon fiber as anode materials for structural lithium-ion batteries. Chin Chem Lett 30:529–532CrossRefGoogle Scholar
  10. 10.
    Park GD, Kang YC (2018) Multiroom-structured multicomponent metal selenide-graphitic carbon–carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries. Nanoscale 10:8125–8132CrossRefGoogle Scholar
  11. 11.
    Elizabeth I, Nair AK, Singh BP, Gopukumar S (2017) Multifunctional Ni–NiO–CNT composite as high performing free standing anode for Li ion batteries and advanced electro catalyst for oxygen evolution reaction. Electrochim Acta 230:98–105CrossRefGoogle Scholar
  12. 12.
    Sun Z, Yan L, Yi Z, Zhou J, Wang M, Yang M, Zhao X, Ma L (2018) Mn2SiO4/CNT composites as anode materials for high performance lithium-ion batteries. J Mater Sci 29:7867–7875Google Scholar
  13. 13.
    Xiao Z, Song Q, Guo R, Kong D, Zhou S, Huang X, Iqbal R, Zhi L (2018) Nitrogen-enriched carbon/CNT composites based on Schiff-base networks: ultrahigh N content and enhanced lithium storage properties. Small 14:1703569CrossRefGoogle Scholar
  14. 14.
    Zhong W, Liu H, Bai C, Liao S, Li Y (2015) Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale Co-based catalysis. ACS Catal 5:1850–1856CrossRefGoogle Scholar
  15. 15.
    Zhang W, Jiang X, Zhao Y, Carné-Sánchez A, Malgras V, Kim J, Wang S, Liu J, Jiang J, Yamauchi Y, Hu M (2017) Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem Sci 8:3538–3546CrossRefGoogle Scholar
  16. 16.
    Zhang X, Luo J, Tang P, Ye X, Peng X, Tang H, Sun SG, Fransaer J (2017) A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: a supercapacitor case with superior rate performance and high mass loading. Nano Energy 31:311–321CrossRefGoogle Scholar
  17. 17.
    Cai G, Zhang W, Jiao L, Yu SH, Jiang HL (2017) Template-directed growth of well-aligned MOF arrays and derived self-supporting electrodes for water splitting. Chem 2:791–802CrossRefGoogle Scholar
  18. 18.
    Hu L, Qu B, Li C, Chen Y, Mei L, Lei D, Chen L, Li Q, Wang T (2013) Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. J Mater Chem A 1:5596CrossRefGoogle Scholar
  19. 19.
    Ge X, Li Z, Wang C, Yin L (2015) Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C Hybrids as anodes for high-performance lithium-ion battery. ACS Appl Mater Interfaces 7:26633–26642CrossRefGoogle Scholar
  20. 20.
    Long H, Shi T, Jiang S, Xi S, Chen R, Liu S, Liao G, Tang Z (2014) Synthesis of a nanowire self-assembled hierarchical ZnCo2O4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. J Mater Chem A 2:3741–3748CrossRefGoogle Scholar
  21. 21.
    Zhong S, Zhang H, Fu J, Shi H, Wang L, Zeng W, Liu Q, Zhang G, Duan H (2018) In-situ synthesis of 3D carbon coated zinc-cobalt bimetallic oxide networks as anode in lithium-ion batteries. ChemElectroChem 5:1708–1716CrossRefGoogle Scholar
  22. 22.
    Zhou L, Qu X, Zheng D, Tang H, Liu D, Qu D, Xie Z, Li J, Qu D (2017) Electrochemical hydrogen storage in facile synthesized Co@N-doped carbon nanoparticle composites. ACS Appl Mater Interfaces 9:41332–41338CrossRefGoogle Scholar
  23. 23.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Haul RAW, Moscou L, Pierorri RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  24. 24.
    Yuan J, Chen C, Hao Y, Zhang X, Gao S, Agrawal R, Wang C, Xiong Z, Yu Z, Xie Y (2017) A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 787:158–162CrossRefGoogle Scholar
  25. 25.
    Gao G, Wu HB, Dong B, Ding S, Lou XW (2015) Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci 2:1400014CrossRefGoogle Scholar
  26. 26.
    Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17:2855–2861CrossRefGoogle Scholar
  27. 27.
    Tang H, Xiong M, Qu D, Liu D, Zhang Z, Xie Z, Wei Z, Tu W, Qu D (2015) Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach. Nano Energy 15:75–82CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Department of Chemistry, School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations