Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 10, pp 991–1002 | Cite as

Photo-electrochemical hydrogen evolution over FTO/Ni0.98Si0.02O2-Ni electrode induced by visible and UV light irradiation

  • Rajkumar Yadav
  • Hari Singh
  • Sandhya Saini
  • Bijoy Biswas
  • Avnish Kumar
  • Anil Kumar SinhaEmail author
Research Article
  • 31 Downloads

Abstract

Photo-electrochemical properties of fluorine-doped tin oxide (FTO)/nickel oxide-nickel (Ni0.98Si0.02O2-Ni) with isolated Si sites are discussed. The Ni0.98Si0.02O2-Ni photo-electrocatalyst without any noble metal was prepared using a one-step chemical reduction precipitation method. Photo-electrochemical properties were investigated by cyclic voltammetry and chronoamperometry techniques in aqueous alkaline solution at pH 8.0. The photo-electrochemical response of the catalyst showed sensitivity to visible and UV light. The catalyst produced hydrogen from water at a rate of 0.5 mmol g−1 h−1 with the reduction of CO2 into CO under visible light in the absence of any light sensitizer or a noble metal. The metallic Ni amount in the catalyst system was optimized to obtain the best photo-electrocatalyst. The first principle DFT study showed that the incorporation of Si sites allowed absorbance of visible light. The catalyst was characterized by powder x-ray diffraction (PXRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma- atomic emission spectroscopy (ICP-AES), Brunauer–Emmett–Teller (BET), cyclic voltammetry, and chronoamperometry. The products were analyzed by gas chromatography- thermal conductivity detector (GC-TCD).

Graphic Abstract

Keywords

Photo-electrocatalysis Hydrogen generation Mesoporous Si-doped NiO Metallic Ni 

Notes

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37CrossRefGoogle Scholar
  2. 2.
    Ashokkumar M (1998) An overview on semiconductor particulate systems for photoproduction of hydrogen. Int J Hydrog Energy 23(6):427–438CrossRefGoogle Scholar
  3. 3.
    Kudo A (2007) Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. Int J Hydrog Energy 32(14):2673–2678CrossRefGoogle Scholar
  4. 4.
    Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111(22):7851–7861CrossRefGoogle Scholar
  5. 5.
    Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya KI, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc Chem Commun 4:356–357CrossRefGoogle Scholar
  6. 6.
    Sato S, White J (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86CrossRefGoogle Scholar
  7. 7.
    Kudo A, Kato H (1997) Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains. Chem Lett 26(9):867–868CrossRefGoogle Scholar
  8. 8.
    Sato J, Saito N, Nishiyama H, Inoue Y (2001) New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration. J Phys Chem B 105(26):6061–6063CrossRefGoogle Scholar
  9. 9.
    Yadav R, Sinha AK (2017) Titania cowrapped α-sulfur composite as a visible light active photocatalyst for hydrogen evolution using in situ methanol from CO2 as a sacrificial agent. ACS Sustain Chem Eng 5(8):6736–6745CrossRefGoogle Scholar
  10. 10.
    Yadav R, Amoli V, Singh J, Tripathi MK, Bhanja P, Bhaumik A, Sinha AK (2018) Plasmonic gold deposited on mesoporous TixSi1−xO2 with isolated silica in lattice: an excellent photocatalyst for photocatalytic conversion of CO2 into methanol under visible light irradiation. J CO2 Util 27:11–21CrossRefGoogle Scholar
  11. 11.
    Awais M, Dini D, MacElroy JD, Halpin Y, Vos JG, Dowling DP (2013) Electrochemical characterization of NiO electrodes deposited via a scalable powder microblasting technique. J Electroanal Chem 689:185–192CrossRefGoogle Scholar
  12. 12.
    Marrani AG, Novelli V, Sheehan S, Dowling DP, Dini D (2013) Probing the redox states at the surface of electroactive nanoporous NiO thin films. ACS Appl Mater Interfaces 6(1):143–152CrossRefGoogle Scholar
  13. 13.
    Decker F, Passerini S, Pileggi R, Scrosati B (1992) The electrochromic process in non-stoichiometric nickel oxide thin film electrodes. Electrochim Acta 37(6):1033–1038CrossRefGoogle Scholar
  14. 14.
    Awais M, Dowling DD, Rahman M, Vos JG, Decker F, Dini D (2013) Spray-deposited NiO x films on ITO substrates as photoactive electrodes for p-type dye-sensitized solar cells. J Appl Electrochem 43(2):191–197CrossRefGoogle Scholar
  15. 15.
    Sheehan S, Naponiello G, Odobel F, Dowling DP, Di Carlo A, Dini D (2015) Comparison of the photoelectrochemical properties of RDS NiO thin films for p-type DSCs with different organic and organometallic dye-sensitizers and evidence of a direct correlation between cell efficiency and charge recombination. J Solid State Electrochem 19(4):975–986CrossRefGoogle Scholar
  16. 16.
    Mitoff S (1961) Electrical conductivity and thermodynamic equilibrium in nickel oxide. J Chem Phys 35(3):882–889CrossRefGoogle Scholar
  17. 17.
    Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of nanostructured NiO. J Phys Chem B 105(15):3039–3044CrossRefGoogle Scholar
  18. 18.
    D’Amario L, Boschloo G, Hagfeldt A, Hammarström L (2014) Tuning of conductivity and density of states of NiO mesoporous films used in p-type DSSCs. J Phys Chem C 118(34):19556–19564CrossRefGoogle Scholar
  19. 19.
    O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737CrossRefGoogle Scholar
  20. 20.
    He J, Lindstrom H, Hagfeldt A, Lindquist SE (2000) Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Sol Energy Mater Sol Cells 62:265–273CrossRefGoogle Scholar
  21. 21.
    Awais M, Gibson E, Vos JG, Dowling DP, Hagfeldt A, Dini D (2014) Fabrication of efficient NiO photocathodes prepared via RDS with novel routes of substrate processing for p-type dye-sensitized solar cells. ChemElectroChem 1(2):384–391CrossRefGoogle Scholar
  22. 22.
    Gibson EA, Awais M, Dini D, Dowling DP, Pryce MT, Vos JG, Boschloo G, Hagfeldt A (2013) Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. PCCP 15(7):2411–2420CrossRefGoogle Scholar
  23. 23.
    Awais M, Dowling DP, Decker F, Dini D (2015) Electrochemical characterization of nanoporous nickel oxide thin films spray-deposited onto indium-doped tin oxide for solar conversion scopes. Adv Condens Matter Phys.  https://doi.org/10.1155/2015/186375 Google Scholar
  24. 24.
    Lewerenz HJ, Peter L (eds) (2013) Photoelectrochemical water splitting: materials, processes and architectures. Royal Society of Chemistry, CambridgeGoogle Scholar
  25. 25.
    Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801CrossRefGoogle Scholar
  26. 26.
    Koffyberg F, Benko F (1981) p-type NiO as a photoelectrolysis cathode. J Electrochem Soc 128(11):2476–2479CrossRefGoogle Scholar
  27. 27.
    Kim H-S, Park JE, Patel M, Kim H, Kim DS, Byeon SK, Lim D, Kim J (2016) Optically transparent and electrically conductive NiO window layer for Si solar cells. Mater Lett 174:10–13CrossRefGoogle Scholar
  28. 28.
    Yu Y, Xia Y, Zeng W, Liu R (2017) Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Mater Lett 206:80–83CrossRefGoogle Scholar
  29. 29.
    Wang W, Zhang W, Hao C, Wu F, Liang Y, Shi H, Wang J, Zhang T, Hua Y (2016) Enhanced photoelectrochemical activity and photocatalytic water oxidation of NiO nanoparticle-decorated SrTiO3 nanocube heterostructures: interaction, interfacial charge transfer and enhanced mechanism. Sol Energy Mater Sol Cells 152:1–9CrossRefGoogle Scholar
  30. 30.
    da Silva MR, Neto VSL, Lucilha AC, de Andrade Scalvi LV, Dall’Antonia LH (2015) Photoelectrochemical properties of FTO/p-NiO electrode induced by UV light irradiation. Ionics 21(5):1407–1415CrossRefGoogle Scholar
  31. 31.
    Patel M, Kim H-S, Kim J, Yun J-H, Kim SJ, Choi EH, Park H-H (2017) Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Sol Energy Mater Sol Cells 170:246–253CrossRefGoogle Scholar
  32. 32.
    Patel M, Kim J (2017) Transparent NiO/ZnO heterojunction for ultra-performing zero-bias ultraviolet photodetector on plastic substrate. J Alloys Compd 729:796–801CrossRefGoogle Scholar
  33. 33.
    Sahara G, Abe R, Higashi M, Morikawa T, Maeda K, Ueda Y, Ishitani O (2015) Photoelectrochemical CO2 reduction using a Ru (ii)–Re (i) multinuclear metal complex on a p-type semiconducting NiO electrode. Chem Commun 51(53):10722–10725CrossRefGoogle Scholar
  34. 34.
    Sápi A, Varga A, Samu GF, Dobó D, Juhász KL, Takács B, Varga E, Kukovecz Á, Kónya Z, Janáky C (2017) Photoelectrochemistry by design: tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance. J Phys Chem C 121(22):12148–12158CrossRefGoogle Scholar
  35. 35.
    Yasumura J (1954) Thermal treatment of raney nickel catalyst. Nature 173(4393):80CrossRefGoogle Scholar
  36. 36.
    Nelson NC, Ruberu TPA, Reichert MD, Vela J (2013) Templated synthesis and chemical behavior of nickel nanoparticles within high aspect ratio silica capsules. J Phys Chem C 117(48):25826–25836CrossRefGoogle Scholar
  37. 37.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist Cryst Mater 220(5/6):567–570Google Scholar
  38. 38.
    Yang D, Chen C, Zheng Z, Liu H, Waclawik ER, Yan Z, Huang Y, Zhang H, Zhao J, Zhu H (2011) Grafting silica species on anatase surface for visible light photocatalytic activity. Energy Environ Sci 4(6):2279–2287CrossRefGoogle Scholar
  39. 39.
    Pitts J, Thomas T, Czanderna A, Passler M (1986) XPS and ISS of submonolayer coverage of Ag on SiO2. Appl Surf Sci 26(1):107–120CrossRefGoogle Scholar
  40. 40.
    Dong Y, Wu R, Jiang P, Wang G, Chen Y, Wu X, Zhang C (2015) Efficient photoelectrochemical hydrogen generation from water using a robust photocathode formed by CdTe QDs and nickel ion. ACS Sustain Chem Eng 3(10):2429–2434CrossRefGoogle Scholar
  41. 41.
    Poldme N, O’Reilly L, Fletcher I, Portoles J, Sazanovich IV, Towrie M, Long C, Vos JG, Pryce MT, Gibson EA (2019) Photoelectrocatalytic H2 evolution from integrated photocatalysts adsorbed on NiO. Chem Sci 10(1):99–112CrossRefGoogle Scholar
  42. 42.
    Hu C, Chu K, Zhao Y, Teoh WY (2014) Efficient photoelectrochemical water splitting over anodized p-type NiO porous films. ACS Appl Mater Interfaces 6(21):18558–18568CrossRefGoogle Scholar
  43. 43.
    Gross MA, Creissen CE, Orchard KL, Reisner E (2016) Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO. Chem Sci 7(8):5537–5546CrossRefGoogle Scholar
  44. 44.
    Dai W-X, Zhang L, Zhao W-W, Yu X-D, Xu J-J, Chen H-Y (2017) Hybrid PbS quantum dot/nanoporous NiO film nanostructure: preparation, characterization, and application for a self-powered cathodic photoelectrochemical biosensor. Anal Chem 89(15):8070–8078CrossRefGoogle Scholar
  45. 45.
    Li Y, Zhang X, Jiang S, Dai H, Sun X, Li Y (2015) Improved photoelectrochemical property of a nanocomposite NiO/CdS@ ZnO photoanode for water splitting. Sol Energy Mater Sol Cells 132:40–46CrossRefGoogle Scholar
  46. 46.
    Dong Y, Chen Y, Jiang P, Wang G, Wu X, Wu R, Zhang C (2015) Efficient and stable MoS2/CdSe/NiO photocathode for photoelectrochemical hydrogen generation from water. Chem An Asian J 10(8):1660–1667CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Rajkumar Yadav
    • 1
    • 2
  • Hari Singh
    • 1
    • 2
  • Sandhya Saini
    • 1
    • 2
  • Bijoy Biswas
    • 1
    • 2
  • Avnish Kumar
    • 1
    • 2
  • Anil Kumar Sinha
    • 1
    • 2
    Email author
  1. 1.Conversions and Catalysis DivisionCSIR-Indian Institute of Petroleum (IIP)DehradunIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia

Personalised recommendations