Journal of Applied Electrochemistry

, Volume 49, Issue 10, pp 979–989 | Cite as

Superconducting properties of PEO coatings containing MgB2 on niobium

  • S. AliasghariEmail author
  • P. Skeldon
  • X. Zhou
  • R. Valizadeh
  • T. Junginger
  • G. B. G. Stenning
  • G. Burt
Research Article
Part of the following topical collections:
  1. Corrosion


A study has been carried out of superconductivity in coatings formed on niobium by plasma electrolytic oxidation (PEO) in an electrolyte containing different concentrations of MgB2. From preliminary experiments, a suitable PEO condition was selected. The coatings were examined by analytical scanning electron microscopy and X-ray diffraction. Superconductivity was assessed using magnetic moment-field measurements. At 6 K, superconductivity of the niobium dominated, which revealed strong flux pinning and sudden release. The latter was more gradual following PEO, indicating pinning was a surface effect. Between the critical temperature of niobium (9.25 K) and MgB2 (about 39 K), the diamagnetic behaviour of superconducting MgB2 was present, with earlier flux penetration the closer the temperature to 39 K. The hysteresis loop indicated stronger flux pinning for lower temperatures, as expected for a superconductor.

Graphic abstract


Plasma electrolytic oxidation Coating Magnesium Boride Superconductivity 



The authors acknowledge funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665593 awarded to UKRI Science and Technology Facilities Council (STFC). They also are grateful to the Material Characterisation Laboratory at ISIS, STFC Rutherford Appleton Laboratory for superconductivity measurements.


  1. 1.
    Aliasghari S, Skeldon P, Zhou X, Valizadeh R, Junginger T, Stenning GBG, Burt G (2019) Communication—formation of a superconducting MgB2-containing coating on niobium by plasma electrolytic oxidation. ECS J Solid State Sci Technol 8:N39–N41CrossRefGoogle Scholar
  2. 2.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122:73–93CrossRefGoogle Scholar
  3. 3.
    Clyne TW, Troughton SC (2019) A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. Int Mater Rev 64:127–162CrossRefGoogle Scholar
  4. 4.
    Curran JA, Clyne TW (2006) Porosity in plasma electrolytic oxidation coatings. Acta Mater 54:1985–1993CrossRefGoogle Scholar
  5. 5.
    Zhang X, Aliasghari S, Nemcova A, Burnett TL, Kubena I, Smid M, Thompson GE, Skeldon P, Withers PJ (2016) X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings. ACS Appl Mater Inter 8:8801–8810CrossRefGoogle Scholar
  6. 6.
    Dunleavy CS, Golosny IO, Curran JA, Clyne TW (2009) Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol 203:3410–3419CrossRefGoogle Scholar
  7. 7.
    Nomine SC, Troughton AV, Nomine G, Henrion TW (2015) Clyne, High speed video evidence of localised discharge cascades during plasma electrolytic oxidation. Surf Coat Technol 269:125–130CrossRefGoogle Scholar
  8. 8.
    Troughton SC, Nomine A, Nomine AV, Henrion G, Clyne TW (2015) Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation. Appl Surf Sci 359:405–411CrossRefGoogle Scholar
  9. 9.
    Monfort F, Berkani A, Matykina RE, Skeldon P, Thompson GE, Habazaki H, Shimizu K (2007) Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte. Corros Sci 49:672–693CrossRefGoogle Scholar
  10. 10.
    Apelfeld A, Krit B, Ludin V, Morozova N, Vladimirov B, Wu RZ (2017) The characterization of plasma electrolytic coatings on AZ41 magnesium alloy. Surf Coat Technol 322:127–133CrossRefGoogle Scholar
  11. 11.
    Laveissière M, Cerda H, Roche J, Cassayre L, Arurault L (2019) In-depth study of the influence of electrolyte composition on coatings prepared by plasma electrolytic oxidation of TA6 V alloy. Surf Coat Technol 361:50–62CrossRefGoogle Scholar
  12. 12.
    Matykina E, Arrabal R, Monfort F, Skeldon P, Thompson GE (2008) Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions. Appl Surf Sci 255:2830–2839CrossRefGoogle Scholar
  13. 13.
    Lou Bih-Show, Lin Yi-Yuan, Tseng Chuan-Ming, Yu-Chu Lu, Jenq-Gong Du, Lee Jyh-Wei (2017) Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives. Surf Coat Technol 332:358–367CrossRefGoogle Scholar
  14. 14.
    Apelfeld AV, Ashmarin AA, Borisov AM, Vinogradov AV, Savushkina SV, Shmytkova EA (2017) Formation of zirconia tetragonal phase by plasma electrolytic oxidation of zirconium alloy in electrolyte comprising additives of yttria nanopowder. Surf Coat Technol 328:513–517CrossRefGoogle Scholar
  15. 15.
    Sundararajan G, Krishna LR (2003) Mechanisms underlying the formation of thick alumina coatings through MAO coating technology. Surf Coat Technol 167(2–3):269–277CrossRefGoogle Scholar
  16. 16.
    Snizhko LO, Yerokhin AL, Gurevina NL, Patalakha VA, Matthews A (2007) Excessive oxygen evolution during plasma electrolytic oxidation of aluminium. Thin Solid Films 56:460–464CrossRefGoogle Scholar
  17. 17.
    Padamsee H (2001) The science and technology of superconducting cavities for accelerators. Supercond Sci Technol 14:R28CrossRefGoogle Scholar
  18. 18.
    Casalbuoni S, Knabbe EA, Kötzler J, Lilje L, Von Sawilski L, Schmueser P, Steffen B (2005) Surface superconductivity in niobium for superconducting RF cavities. Nucl Instrum. Method A 538:45–64CrossRefGoogle Scholar
  19. 19.
    Sowa M, Kazek-Kęsik A, Krząkała A, Socha RP, Dercz G, Michalska J, Simka W (2014) Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions. J. Solid State Electrochem 18:3129–3142CrossRefGoogle Scholar
  20. 20.
    Stojadinović S, Vasilić R (2016) Orange–red photoluminescence of Nb2O5:Eu3+, Sm3+ coatings formed by plasma electrolytic oxidation of niobium. J Alloy Compd 685:881–889CrossRefGoogle Scholar
  21. 21.
    Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J (2001) Superconductivity at 39 K in magnesium diboride. Nature 410:63–64CrossRefGoogle Scholar
  22. 22.
    Mijatovic D, Brinkman A, Hilgenkamp JWM, Rogalla H, Rijnders AJHM, Blank DHA (2004) Pulsed-laser deposition of MgB2 and B thin films. Appl. Phys. A 79:1243–1246CrossRefGoogle Scholar
  23. 23.
    Zhang S, Deng CY, Wang X, Wu YP, Fu Y, Fu XH (2015) Superconducting MgB2 film prepared by chemical vapor deposition at atmospheric pressure of N2. Thin Solid Films 584:300–304CrossRefGoogle Scholar
  24. 24.
    Ueda K, Naito M (2001) As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Appl Phys Lett 79:2046–2048CrossRefGoogle Scholar
  25. 25.
    Xi XX, Pogrebnyakov AV, Xu SY, Chen K, Cui Y, Maertz EC, Zhuang CG, Li Q, Lamborn DR, Redwing JM, Liu ZK, Soukiassian A, Schlom DG, Weng XJ, Dickey EC, Chen YB, Tian W, Pan XQ, Cybart SA, Dynes RC (2007) MgB2 thin films by hybrid physical-chemical vapor deposition. Physica C 456(1–2):22–37CrossRefGoogle Scholar
  26. 26.
    Moeckly BH, Ruby WS (2006) Growth of high-quality large-area MgB2 thin films by reactive evaporation. Supercond Sci Technol 19:L21–L24CrossRefGoogle Scholar
  27. 27.
    Vijayaragavan KS, Putatunda SK, Dixit A, Lawes G (2010) Electroless deposition of superconducting MgB2 films on various substrates. Thin Solid Films 51:658–661CrossRefGoogle Scholar
  28. 28.
    Jadhav AB, Pawar SH (2003) Electrochemical synthesis of superconducting magnesium diboride films: a novel potential technique. Supercond Sci Technol 16:752–759CrossRefGoogle Scholar
  29. 29.
    Ochsenkühn-Petropoulou M, Mendrinos L, Altzoumailis A, Argyropoulou R (2005) Production and characterization of MgB2 coatings on various substrates by electrophoretic deposition. J. Mater. Processing Technol. 161(1–2):16–21CrossRefGoogle Scholar
  30. 30.
    Nath M, Parkinson BA (2006) A simple sol-gel synthesis of superconducting MgB2 nanowires. Adv Mater 18:1865–1868CrossRefGoogle Scholar
  31. 31.
    Peng N, Shao G, Jeynes C, Webb RP, Gwilliam RM, Boudreault G, Astill DM, Liang WY (2003) Ion beam synthesis of superconducting MgB2 thin films. Appl Phys Lett 82:236–238CrossRefGoogle Scholar
  32. 32.
    Aliasghari S, Skeldon P, Thompson GE (2014) Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Appl. Surf. Sci. 316:463–476CrossRefGoogle Scholar
  33. 33.
    Young L, Zobel FGR (1966) An ellipsometric study of steady-state high field ionic conduction in anodic oxide films on tantalum, niobium, and silicon. J Electrochem Soc 113:277–283CrossRefGoogle Scholar
  34. 34.
    Habazaki H, Ogasawara T, Konno H, Skimizu K, Asami K, Saito K, Skeldon P, Thompson GE (2005) Growth of anodic oxide films on oxygen-containing niobium. Electrochim Acta 50:5334–5339CrossRefGoogle Scholar
  35. 35.
    Jaspard-Mécuson F, Czerwiec T, Henrion G, Belmonte T, Dujardin L, Viola A, Beauvoir J (2012) Tailored aluminium oxide layers by bipolar current adjustment in the plasma electrolytic oxidation (PEO) process. Surf Coat Technol 2007:8677–8682Google Scholar
  36. 36.
    Rogov Aleksey, Yerokhin Aleksey, Matthews Allan (2017) The role of cathodic current in plasma electrolytic oxidation of aluminum: phenomenological concepts of the “soft sparking” mode. Langmuir 33:11059–11069CrossRefGoogle Scholar
  37. 37.
    Rogov AB, Shayapov VR (2017) The role of cathodic current in PEO of aluminum: influence of cationic electrolyte composition on the transient current-voltage curves and the discharges optical emission spectra. Appl Surf Sci 394:323–332CrossRefGoogle Scholar
  38. 38.
    Arrabal R, Matykina E, Hashimoto T, Skeldon P, Thompson GE (2009) Characterization of AC PEO coatings on magnesium alloys. Surf Coat Technol 203:2207–2220CrossRefGoogle Scholar
  39. 39.
    Han Baojun, Yang Yang, Deng Hao, Chen Yaowu, Yang Chubin (2018) Plasma-electrolytic-oxidation coating containing Y2O3 nanoparticles on AZ91 magnesium alloy. Int J Electrochem Sci 13:5681–5697CrossRefGoogle Scholar
  40. 40.
    Gnedenkov SV, Sinebryukhov SL, Mashtalyar DV, Imshinetskiy IM, Samokhin AV, Tsvetkov YV (2015) Fabrication of coatings on the surface of magnesium alloy by plasma electrolytic oxidation using ZrO2 and SiO2 nanoparticles. J Nanomater 16(1):196Google Scholar
  41. 41.
    Collings EW, Smith RD (1972) The magnetic susceptibility of niobium. J Less-Comm Met 27:389–401CrossRefGoogle Scholar
  42. 42.
    Reich S, Leitus G, Felner I (2002) On the magnetism of the normal state in MgB2. J Supercond 15:109–111CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.STFC Daresbury LaboratoryASTeCDaresbury, Warrington, CheshireUK
  2. 2.Corrosion and Protection Group, School of MaterialsThe University of ManchesterManchesterUK
  3. 3.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada
  4. 4.TRIUMFVancouverCanada
  5. 5.STFC Rutherford Appleton LaboratoryISISDidcotUK
  6. 6.Engineering Building, Lancaster UniversityLancasterUK
  7. 7.Cockcroft Institute, Keckwick LnDaresbury, WarringtonUK

Personalised recommendations