Low-temperature synthesis of GaN film from aqueous solution by electrodeposition

  • Jaewook KangEmail author
  • Takuaki Mitsuhashi
  • Kensuke Kuroda
  • Masazumi Okido
Research Article
Part of the following topical collections:
  1. Electrodeposition


Gallium nitride (GaN) films were synthesized on n-type-Si (111) substrates using a low-cost and low-temperature technique of electrochemical deposition. The electrochemical behavior of Ga3+, NH4+, and NO3 ions in the aqueous solutions used as sources of GaN were confirmed by cyclic voltammetry. The scanning electron microscopy images showed that the films deposited at a current density of 3.5 mA cm−2 or greater have plate-like surface morphologies on the Si substrate. The energy-dispersive X-ray spectroscopy results showed that oxygen, gallium, and nitrogen coexist in these plate-like films. In the X-ray diffraction patterns, the sample synthesized at a current density of 3.5 mA cm−2 for 24 h exhibited peaks of gallium oxide and hexagonal-GaN phase. Photoluminescence analysis revealed a peak at 3.2 eV, which corresponds to the band gap energy of GaN, as well as a broad peak at around 2.5 eV at room temperature.

Graphic abstract


Electrochemical deposition Cyclic voltammetry GaN Photoluminescence Low-cost technique 



We appreciate the assistance offered by H. Amano and Y. Honda of Nagoya University with experiments for PL measurement. This work was financially supported by the Grant-in-Aid for Challenging Exploratory Research (No. 16K14447) from the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    Ha B, Seo SH, Cho JH, Yoon CS, Yoo J, Yi GC, Park CY, Lee CJ (2005) Optical and field emission properties of thin single-crystalline GaN nanowires. J Phys Chem B 109:11095–11099CrossRefGoogle Scholar
  2. 2.
    Reddy VR, Rao PK, Ramesh CK (2007) Annealing effects on structural and electrical properties of Ru/Au on n-GaN Schottky contacts. Mater Sci Eng B 137:200–204CrossRefGoogle Scholar
  3. 3.
    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y (1996) InGaN-Based multi-quantum-well-structure laser diodes. Jpn J Appl Phys 35:74–76CrossRefGoogle Scholar
  4. 4.
    Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K (1998) InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett 72:211–213CrossRefGoogle Scholar
  5. 5.
    Ponce FA, Bour DP (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351–359CrossRefGoogle Scholar
  6. 6.
    Khan MA, Hu X, Sumin G, Lunev A, Yang J, Gaska R, Shur MS (2000) AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett 21:63–65CrossRefGoogle Scholar
  7. 7.
    Khan MA, Shur MS, Chen QC, Kuznia JN (1994) Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron Lett 30:2175–2176CrossRefGoogle Scholar
  8. 8.
    Verma J, Islam SM, Verma A, Protasenko V, Jena D (2018) A volume in Woodhead Publishing series in electronic and optical materials. Nitride semiconductor light-emitting diodes (LEDs), 2nd edn, pp 377–413Google Scholar
  9. 9.
    Aktas O, Kim W, Fan Z, Botchkarev AE, Salvador A, Mohammad SN, Sverdlov B, Morkoc H (1995) High transconductance normally-off GaN MODFETs. Electron Lett 31:1389–1390CrossRefGoogle Scholar
  10. 10.
    Reusch D, Strydom J (2015) Evaluation of gallium nitride transistors in high frequency resonant and soft-switching DC–DC converters. IEEE Trans Power Electron 30:5151–5158CrossRefGoogle Scholar
  11. 11.
    Huang HM, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. J Sci 292:1897–1899CrossRefGoogle Scholar
  12. 12.
    Johnson JC, Choi HJ, Knutsen KP, Schaller RD, Yang P (2002) Single gallium nitride nanowire lasers. Nat Mater 1:106–110CrossRefGoogle Scholar
  13. 13.
    Keller S, Vetury R, Parish G, DenBaars SP, Mishra UK (2001) Effect of growth termination conditions on the performance of AlGaN/GaN high electron mobility transistors. Appl Phys Lett 78:3088–3090CrossRefGoogle Scholar
  14. 14.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  15. 15.
    Jain SC, Willander M, Narayan J, Overstraeten RV (2000) III–nitrides: growth, characterization, and properties. J Appl Phys 87:965–1006CrossRefGoogle Scholar
  16. 16.
    Amano H, Tanaka T, Kunii Y, Kato K, Kim ST, Akasaki I (1994) Room-temperature violet stimulated emission from optically pumped AlGaN/GaInN double heterostructure. Appl Phys Lett 64:1377–1379CrossRefGoogle Scholar
  17. 17.
    Azuma Y, Shimada M, Okuyama K (2004) Synthesis of monodisperse ultrapure gallium nitride nanoparticles by MOCVD. J Chem Vap Depos 10:11–13CrossRefGoogle Scholar
  18. 18.
    Nikishin SA, Faleev NN, Antipov VG, Francoeur S, Grave de Peralta L, Seryogin GA, Temkin H (1999) High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia. J Appl Phys Lett 75:2073–2075CrossRefGoogle Scholar
  19. 19.
    Jasinski J, Swider W, Liliental-Weber Z, Visconti P, Jones KM, Reshchikov MA, Yun F, Morkoç H, Park SS, Lee KY (2001) Characterization of free-standing hydride vapor phase epitaxy GaN. Appl Phys Lett 78:2297–2299CrossRefGoogle Scholar
  20. 20.
    Elkashef N, Srinivasa RS, Major S, Sabharwal SC, Muthe KP (1998) Sputter deposition of gallium nitride films using a GaAs target. J Thin Solid Films 333:9–12CrossRefGoogle Scholar
  21. 21.
    Iskandar F, Ogi T, Okuyama K (2006) Simple synthesis of GaN nanoparticles from gallium nitrate and ammonia aqueous solution under a flow of ammonia gas. Mater Lett 60:73–76CrossRefGoogle Scholar
  22. 22.
    Morkoç H, Strite S, Gao GB, Lin ME, Sverdlov B, Burns M (1994) Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J Appl Phys 76:1363–1398CrossRefGoogle Scholar
  23. 23.
    Roy RK, Pal AK (2005) Electrodeposition of gallium in the presence of NH4Cl in an ionic liquid: hints for GaN formation. Mater Lett 59:2204–2209CrossRefGoogle Scholar
  24. 24.
    Rajeshwar K (1992) Electrosynthesized thin films of group II–VI compound semiconductors, alloys and superstructures. Adv Mater 4:23–29CrossRefGoogle Scholar
  25. 25.
    Qaeed MA, Ibrahim K, Saron KMA, Salhin A (2013) Cubic and hexagonal GaN nanoparticles synthesized at low temperature. Superlattices Microstruct 64:70–77CrossRefGoogle Scholar
  26. 26.
    Lincot D (2005) Electrodeposition of semiconductors. J Thin Solid Films 487:40–48CrossRefGoogle Scholar
  27. 27.
    Katayama J, Izaki M (2000) Observation of photocurrent generation in electrodeposited zinc oxide layers. J Appl Electrochem 30:855–858CrossRefGoogle Scholar
  28. 28.
    Wang H, Chen XY, Ng AMC, Fang F, Djuršić AB, Chan WK (2009) 2009 IEEE ThO2, 14th OECCGoogle Scholar
  29. 29.
    Al-Heuseen K, Hashim MR, Ali NK (2010) Synthesis of hexagonal and cubic GaN thin film on Si (111) using a low-cost electrochemical deposition technique. Mater Lett 64:1604–1606CrossRefGoogle Scholar
  30. 30.
    Takeno N (2005) Atlas of Eh-pH diagrams. Intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science and Technology, pp 153–155Google Scholar
  31. 31.
    Gabe DR (1997) The role of hydrogen in metal electrodeposition processes. J Appl Electrochem 27:908–915CrossRefGoogle Scholar
  32. 32.
    Pourbaix MJN (1949) Thermodynamics of dilute aqueous solutions. Edward Arnold and Co, LondonGoogle Scholar
  33. 33.
    Ryan N, Lumley EJ (1959) The source of the nitrogen impurity in electrodeposited chromium. J Electrochem Soc 106:388–391CrossRefGoogle Scholar
  34. 34.
    Cubicciotti D (1989) Equilibrium chemistry of nitrogen and potential-pH diagrams for the Fe-Cr-H2O system in BWR water. J Nucl Mater 167:241–248CrossRefGoogle Scholar
  35. 35.
    Al-Heuseen K, Hashim MR (2011) One-step synthesis of GaN thin films on Si substrate by a convenient electrochemical technique at low temperature for different durations. J Cryst Growth 324:274–277CrossRefGoogle Scholar
  36. 36.
    Al-Heuseen K (2016) Synthesis of GaN thin film using a low-cost electrochemical deposition technique for hydrogen gas sensing. Int J Thin Films Sci Technol 5:113–119CrossRefGoogle Scholar
  37. 37.
    Sarkar S, Sampath S (2016) Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control. Chem Commun 52:6407–6410CrossRefGoogle Scholar
  38. 38.
    Pearce BL, Wilkins SJ, Paskova T, Ivanisevic A (2015) A review of in situ surface functionalization of gallium nitride via beaker wet chemistry. J Mater Res 30:2859–2870CrossRefGoogle Scholar
  39. 39.
    Cruz SC, Keller S, Mates TE, Mishra UK, DenBaars SP (2009) Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition. J Cryst Growth 311:3817–3823CrossRefGoogle Scholar
  40. 40.
    Joint Committee on Powder Diffraction Standards (JCPDS) (1967) JCPDS FileGoogle Scholar
  41. 41.
    Balkaş CM, Davis RF (1996) Synthesis routes and characterization of high-purity, single-phase gallium nitride powders. J Am Ceram Soc 79:2309–2312CrossRefGoogle Scholar
  42. 42.
    Sprenger JK, Cavanagh AS, Sun H, Wahl KJ, Roshko A, George SM (2016) Electron enhanced growth of crystalline gallium nitride thin films at room temperature and 100 °C using sequential surface reactions. Chem Mater 28:5282–5294CrossRefGoogle Scholar
  43. 43.
    Wang G, Park JS, Kong X, Wilson PR, Chen Z, Ahn JH (2008) Facile synthesis and characterization of gallium oxide (β-Ga2O3) 1D nanostructures: nanowires, nanoribbons, and nanosheets. Cryst Growth Des 8:1940–1944CrossRefGoogle Scholar
  44. 44.
    Zhang H, Ye Z, Zhao B (2000) Epitaxial growth of wurtzite GaN on Si (111) by a vacuum reactive evaporation. J Appl Phys 87:2830–2834CrossRefGoogle Scholar
  45. 45.
    Chaudhuri DS, Pal AK (2002) Hexagonal GaN films deposited by reactive hot wall evaporation technique. Mater Lett 53:68–75CrossRefGoogle Scholar
  46. 46.
    Neugebauer J, Van de Walle CG (1996) Gallium vacancies and the yellow luminescence in GaN. Appl Phys Lett 69:503–505CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Materials Science & Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.Institute of Materials and Systems for SustainabilityNagoya UniversityNagoyaJapan

Personalised recommendations