Journal of Applied Electrochemistry

, Volume 49, Issue 7, pp 715–729 | Cite as

Theory and technology for electroplating a rose golden Cu–Zn–Sn alloy using a disodium ethylenediamine tetraacetate system

  • Lifeng DingEmail author
  • Chongyan Chen
  • Yahui Dong
  • Jun Cheng
  • Yulan Niu
Research Article
Part of the following topical collections:
  1. Electrodeposition


A non-cyanide rose golden electroplating system was investigated in this work. The electroplated layer of Cu–Zn–Sn alloy was also investigated using a disodium ethylenediamine tetraacetate (EDTA·2Na) system, in which CuSO4·5H2O, ZnSO4·7H2O and Na2SnO3·3H2O were the main salts. EDTA·2Na acted as a complexing agent. Finally, NaOH acted as a buffering agent in the electroplating solution. The effects of different electroplating solutions on colour, micro-topography, composition and phase structure of the electroplated layer was analysed by photo analysis, SEM, EDS and XRD. Meanwhile, different electroplating solutions were analysed and compared by electrochemical analysis and UV–Vis, FTIR and NMR spectroscopy. A rose golden electroplated layer of Cu–Zn–Sn alloy could be obtained by adjusting the amount of the main salts. The composition of the electroplated layer was 98.81% Cu, 0.77% Zn and 0.42% Sn. Moreover, the electroplated layer was composed of regular 50–100 nm particles. The composition of the ternary alloy-electroplated layer was Cu, Cu5Zn8 and Cu10Sn3 phase. At the same time, the cathode only had a single deposition peak at − 1.22 V by electrochemical analysis of the electroplating solution. UV, IR and NMR analyses show that a chelate was formed with EDTA·2Na and metal ions in an alkaline environment. These results may provide a theoretical guidance for a new technology for Cu–Zn–Sn alloy electrodeposition.

Graphical Abstract


Rose golden Cu–Zn–Sn alloy Electroplating solution Non-cyanide system 



This work was supported by the National Natural Science Foundation of China (Grant No. NSFC51604180), the Applied Basic Research Programs of Science and Technology Department of Shanxi Province (Grant No. 201701D221036), the start-up funds of Taiyuan Institute of Technology, and the Youth Academic Leader of Taiyuan Institute of Technology support program.


  1. 1.
    Abbott AP, Frisch G, Ryder KS (2013) Annu Rev Mater Res 43:335–358CrossRefGoogle Scholar
  2. 2.
    Chu Q, Liang J, Hao J (2014) Electrochimica Acta 115:499–503CrossRefGoogle Scholar
  3. 3.
    Vreese PD, Skoczylas A, Matthijs E, Fransaer E, Binnemans K (2013) Electrochimica Acta 108:788–794CrossRefGoogle Scholar
  4. 4.
    Hrussanova A, Krastev I, Beck G, Zielonka A (2010) J Appl Electrochem 40:2145–2151CrossRefGoogle Scholar
  5. 5.
    Qiao X, Li H, Zhao W, Li Q (2013) Electrochimica Acta 89:771–777CrossRefGoogle Scholar
  6. 6.
    Gougaud C, Rai D, Delbos S, Chassaing E, Lincot D (2013) J Electrochem Soc 160:D485–D494CrossRefGoogle Scholar
  7. 7.
    Joi A, Akolkar R, Landau U (2013) J Electrochem Soc 160:D3001–D3003CrossRefGoogle Scholar
  8. 8.
    Almeida MRHD, Barbano EP, Carvalho MFD, Tulio PC, Carlos IA (2015) Appl Surf Sci 333:13–22CrossRefGoogle Scholar
  9. 9.
    Clauwaert K, Binnemans K, Matthijs E, Fransaer J (2016) Electrochimica Acta 188:344–355CrossRefGoogle Scholar
  10. 10.
    Ding LF, Liu F, Cheng J, Niu YL (2018) J Appl Electrochem 48:175–185CrossRefGoogle Scholar
  11. 11.
    Slupska M, Ozga P (2014) Electrochimica Acta 141:149–160CrossRefGoogle Scholar
  12. 12.
    Salhi Y, Cherrouf S, Cherkaoui M, Abdelouahdi K (2016) Appl Surf Sci 367:64–69CrossRefGoogle Scholar
  13. 13.
    Almeida MRHD, Barbano EP, Zacarin MG, Brito MMD, Tulio PC, Carlos IA (2016) Surf Coat Technol 287:103–112CrossRefGoogle Scholar
  14. 14.
    Ramírez C, Calderón JA (2016) J Electroanal Chem 765:132–139CrossRefGoogle Scholar
  15. 15.
    Pary P, Bengoa LN, Egli WA (2015) J Electrochem Soc 162:D275–D282CrossRefGoogle Scholar
  16. 16.
    Josell D, Moffat TP (2014) J Electrochem Soc 161:D558–D563CrossRefGoogle Scholar
  17. 17.
    Almeida MRHD, Barbano EP, Carvalho MFD, Carlos IA, Siqueira JLP (2011) Surf Coat Technol 206:95–102CrossRefGoogle Scholar
  18. 18.
    Ubale AU, Sakhare YS, Bombatkar SM (2013) Mater Res Bull 48:3564–3571CrossRefGoogle Scholar
  19. 19.
    He Y, Gao X, Zhang Y, Xu H (2012) Surf Coat Technol 206:4310–4315CrossRefGoogle Scholar
  20. 20.
    Banica R, Nyari T, Sasca V (2012) Int J Hydrogen Energy 37:16489–16497CrossRefGoogle Scholar
  21. 21.
    Darban AK, Aazami M, Meléndez AM, Abdollahy M, Gonzalez I (2011) Hydrometallurgy 105:296–303CrossRefGoogle Scholar
  22. 22.
    Yin KB, Xia YD, Chan CY, Zhang WQ, Wang QJ, Zhao XN, Li AD, Liu ZG, Bayes MW, Yee KW (2008) Scr Mater 58:65–68CrossRefGoogle Scholar
  23. 23.
    Joint Committee on Powder Diffraction Standards. JCPDS, powder diffraction file—PDF-2, database sets 1-49, ICDD, 2000 (CDROM)Google Scholar
  24. 24.
    Murase K, Yanase K, Ichii T, Sugimura H (2010) J Electrochem Soc 160:515–521Google Scholar
  25. 25.
    Chen Z, Lei H, Lei W, Zhang C, Niu H (2011) Appl Surf Sci 257:8490–8492CrossRefGoogle Scholar
  26. 26.
    Feng Z, Li Q, Zhang J, Yang P (2015) J Electrochem Soc 162:D412–D422CrossRefGoogle Scholar
  27. 27.
    Tułodziecki M, Guery C, Taberna PL, Tarascon JM (2012) J Electrochem Soc 159:D691CrossRefGoogle Scholar
  28. 28.
    Murase K, Ito A, Ichii T, Sugimura H (2011) J Electrochem Soc 158:D335–D698CrossRefGoogle Scholar
  29. 29.
    Yu TY, Lee H, Hsu HL, Dow WP, Cheng HK (2016) J Electrochem Soc 163:D734–D741CrossRefGoogle Scholar
  30. 30.
    Juškėnas R, Mockus Z, Kanapeckaitė S, Stalnionis G, Survila A (2017) Electrochimica Acta 52:928–935Google Scholar
  31. 31.
    Carvalho MFD, Barbano EP, Carlos IA (2013) Electrochimica Acta 109:798–808CrossRefGoogle Scholar
  32. 32.
    Carvalho MFD, Barbano EP, Carlos IA (2015) Surf Coat Technol 262:111–122CrossRefGoogle Scholar
  33. 33.
    Zhao X, Zhang J, Qu J (2015) Electrochimica Acta 180:129–137CrossRefGoogle Scholar
  34. 34.
    Schah-Mohammedi P, Shenderovich IG, Detering C, Limbach H, Tolstoy PM, Smirnov SN, Denisov GS, Golubev NS (2013) J Electrochem Soc 122:12878–12879Google Scholar
  35. 35.
    Jiang L, Huang J, Wang Y, Tang H (2012) Analyst 137:4209–4219CrossRefGoogle Scholar
  36. 36.
    He H, Wu D, Zhao L, Luo C, Dai C, Zhang Y (2016) J Hazard Mater 309:116–125CrossRefGoogle Scholar
  37. 37.
    Guan X, Jiang X, Qiao J, Zhou G (2015) J Hazard Mater 300:688–694CrossRefGoogle Scholar
  38. 38.
    Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q (2015) Chem Eng J 281:1–10CrossRefGoogle Scholar
  39. 39.
    Zhao M, Yu L, Akolkar R, Anderson AB (2016) J Phys Chem 120:24789–24793Google Scholar
  40. 40.
    Zhang Z, Fu Y, Zhou C, Li J, Lai Y (2015) Solid State Ion 269:62–66CrossRefGoogle Scholar
  41. 41.
    Kržišnik N, Mladenovič A, Škapin AS, Škrlep L, Ščančar J, Milačič R (2014) Sci Total Environ 476:20–28Google Scholar
  42. 42.
    Garapati S, Burns CS, Rodriguez A (2014) J Phys Chem B 118:12960–12964CrossRefGoogle Scholar
  43. 43.
    Liu F, Shan C, Zhang X, Zhang Y, Zhang W (2017) J Hazard Mater 321:290–298CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringTaiyuan Institute of TechnologyTaiyuanPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations